2018 AMC 12B Problem #25

Geometry Level 3

Circles ω 1 , \omega_1, ω 2 , \omega_2, and ω 3 \omega_3 each have radius 4 and are placed in the plane so that each circle is externally tangent to the other two. Points P 1 , P_1, P 2 , P_2, and P 3 P_3 lie on ω 1 , \omega_1, ω 2 , \omega_2, and ω 3 \omega_3 respectively such that P 1 P 2 = P 2 P 3 = P 3 P 1 P_1P_2 = P_2P_3 = P_3P_1 and line P i P i + 1 P_iP_{i + 1} is tangent to ω i \omega_i for each i = 1 , 2 , 3 , i = 1, 2, 3, where P 4 = P 1 . P_4 = P_1. See the figure below. The area of P 1 P 2 P 3 \triangle P_1P_2P_3 can be written in the form a + b \sqrt{a} + \sqrt{b} for positive integers a a and b . b. What is a + b a + b ?


This problem is part of the 2018 AMC 12B .
548 550 554 546 552

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

David Vreken
Mar 2, 2018

Let A A be the center of ω 3 \omega_3 , C C be the center of ω 2 \omega_2 , and B B be the intersection of segments P 2 P 3 P_2P_3 and A C AC . We will then examine A P 3 B \triangle AP_3B and C P 2 B \triangle CP_2B .

Let r r be the radius of either circle. Then A P 3 = C P 2 = r AP_3 = CP_2 = r and A C = 2 r AC = 2r . Since P 2 P 3 P_2P_3 is tangent to circle ω 2 \omega_2 , C P 2 B = 90 ° \angle CP_2B = 90° . Since P 1 P 3 P_1P_3 is tangent to circle ω 3 \omega_3 , A P 3 P 1 = 90 ° \angle AP_3P_1 = 90° , and since P 1 P 2 P 3 \triangle P_1P_2P_3 is an equilateral triangle, P 1 P 3 P 2 = 60 ° \angle P_1P_3P_2 = 60° , which means A P 3 B \angle AP_3B = = A P 3 P 1 P 1 P 3 P 2 \angle AP_3P_1 - \angle P_1P_3P_2 = = 90 ° 60 ° 90° - 60° = = 30 ° 30° .

By law of sines on A P 3 B \triangle AP_3B , sin A B P 3 A P 3 = sin A P 3 B A B \frac{\sin \angle ABP_3}{AP_3} = \frac{\sin \angle AP_3B}{AB} or sin A B P 3 r = sin 30 ° A B \frac{\sin \angle ABP_3}{r} = \frac{\sin 30°}{AB} , and by law of sines on C P 2 B \triangle CP_2B , sin C B P 2 C P 2 = sin C P 2 B B C \frac{\sin \angle CBP_2}{CP_2} = \frac{\sin \angle CP_2B}{BC} or sin C B P 2 r = sin 90 ° B C \frac{\sin \angle CBP_2}{r} = \frac{\sin 90°}{BC} . Since A B P 3 = C B P 2 \angle ABP_3 = \angle CBP_2 as vertical angles, we can combine the two ratios and arrive at sin 30 ° A B = sin 90 ° B C \frac{\sin 30°}{AB} = \frac{\sin 90°}{BC} , and simplifying this gives B C = 2 A B BC = 2AB . Since A B + B C = A C = 2 r AB + BC = AC = 2r , A B + 2 A B = 2 r AB + 2AB = 2r , so A B = 2 3 r AB = \frac{2}{3}r , and B C = 2 A B = 2 2 3 r = 4 3 r BC = 2AB = 2\frac{2}{3}r = \frac{4}{3}r .

Using sin A B P 3 r = sin 30 ° A B \frac{\sin \angle ABP_3}{r} = \frac{\sin 30°}{AB} once again along with A B = 2 r AB = 2r , we find that A B P 3 = sin 1 3 4 \angle ABP_3 = \sin^{-1}\frac{3}{4} . Since the sum of the angles of A P 3 B \triangle AP_3B is 180 ° 180° , B A P 3 \angle BAP_3 = = 180 ° A P 3 B A B P 3 180° - \angle AP_3B - \angle ABP_3 = = 180 ° 30 ° sin 1 3 4 180° - 30° - \sin^{-1}\frac{3}{4} = = 150 ° sin 1 3 4 150° - \sin^{-1}\frac{3}{4} . Therefore, sin B A P 3 \sin \angle BAP_3 = = sin ( 150 ° sin 1 3 4 ) \sin (150° - \sin^{-1}\frac{3}{4}) = = sin 150 ° cos ( sin 1 3 4 ) cos 150 ° sin ( sin 1 3 4 ) \sin 150° \cos(\sin^{-1}\frac{3}{4}) - \cos 150° \sin(\sin^{-1}\frac{3}{4}) = = 7 + 3 3 8 \frac{\sqrt{7} + 3\sqrt{3}}{8} .

By law of sines on A P 3 B \triangle AP_3B once again, sin A P 3 B A B = sin B A P 3 B P 3 \frac{\sin \angle AP_3B}{AB} = \frac{\sin \angle BAP_3}{BP_3} or sin 30 ° 2 3 r = 7 + 3 3 8 B P 3 \frac{\sin 30°}{\frac{2}{3}r} = \frac{\frac{\sqrt{7} + 3\sqrt{3}}{8}}{BP_3} , which means B P 3 = ( 7 + 3 3 6 ) r BP_3 = (\frac{\sqrt{7} + 3\sqrt{3}}{6})r .

By Pythagorean's Theorem, B P 2 = B C 2 C P 2 2 = ( 4 3 r ) 2 r 2 = 7 3 r BP_2 = \sqrt{BC^2 - CP_2^2} = \sqrt{(\frac{4}{3}r)^2 - r^2} = \frac{\sqrt{7}}{3}r .

Since P 2 P 3 = B P 2 + B P 3 P_2P_3 = BP_2 + BP_3 , P 2 P 3 P_2P_3 = = 7 3 r + ( 7 + 3 3 6 ) r \frac{\sqrt{7}}{3}r + (\frac{\sqrt{7} + 3\sqrt{3}}{6})r = = r 2 ( 7 + 3 ) \frac{r}{2}(\sqrt{7} + \sqrt{3}) .

The area of an equilateral triangle formed by side lengths P 2 P 3 P_2P_3 would then be A A = = 3 4 ( r 2 ( 7 + 3 ) ) 2 \frac{\sqrt{3}}{4}(\frac{r}{2}(\sqrt{7} + \sqrt{3}))^2 = = r 2 16 ( 10 3 + 6 7 ) \frac{r^2}{16}(10\sqrt{3} + 6\sqrt{7}) .

In the problem, r = 4 r = 4 , so A = 4 2 16 ( 10 3 + 6 7 ) = 10 3 + 6 7 = 300 + 252 A = \frac{4^2}{16}(10\sqrt{3} + 6\sqrt{7}) = 10\sqrt{3} + 6\sqrt{7} = \sqrt{300} + \sqrt{252} , so a = 300 a = 300 and b = 252 b = 252 , and a + b = 300 + 252 = 552 a + b = 300 + 252 = \boxed{552} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...