2018 AMC 12B Problem #5

How many subsets of { 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 } \{2,3,4,5,6,7,8,9\} contain at least one prime number?


This problem is part of the 2018 AMC 12B .
256 128 240 224 192

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Marta Reece
Feb 16, 2018

Number of subsets in a set of 8 elements is 2 8 = 256 2^8=256 .

Subsets not containing a prime number contain only some of the four elements which are not prime numbers, namely 4 , 6 , 8 , 9 4, 6, 8, 9 , or no elements at all.

There are 2 4 = 16 2^4=16 subsets in a set of four elements, including the empty set.

The remaining subsets each contain at least one prime number and there are 256 16 = 240 256-16=\boxed{240} of them.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...