2018 AMC 12B Problem #9

Algebra Level 2

What is

i = 1 100 j = 1 100 ( i + j ) ? \sum^{100}_{i=1} \sum^{100}_{j=1} (i + j) ?


This problem is part of the 2018 AMC 12B .
505,000 1,010,000 100,100 500,500 1,001,000

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 17, 2018

S = i = 1 n j = 1 n ( i + j ) = i = 1 n ( n i + n ( n + 1 ) 2 ) = n × n ( n + 1 ) 2 + n ( n + 1 ) 2 × n = n 2 ( n + 1 ) Putting n = 100 = 1010000 \begin{aligned} S & = \sum_{i=1}^n \sum_{j=1}^n (i+j) \\ & = \sum_{i=1}^n \left(ni+\frac {n(n+1)}2\right) \\ & = n\times \frac {n(n+1)}2 + \frac {n(n+1)}2\times n \\ & = n^2(n+1) \quad \quad \small \color{#3D99F6} \text{Putting }n=100 \\ & = \boxed{1010000} \end{aligned}

Kevin Tran
Feb 16, 2018

= i = 1 100 j = 1 100 ( i + j ) = i = 1 100 ( i + 100 ( 100 + 1 ) 2 ) = i = 1 100 ( i + 5050 ) = i = 1 100 i + i = 1 100 5050 = 5050 + 505000 = 1010000 =\quad \sum _{ i=1 }^{ 100 }{ \sum _{ j=1 }^{ 100 }{ (i+j) } } \\ =\quad \sum _{ i=1 }^{ 100 }{ (i\quad +\quad \frac { 100(100+1) }{ 2 } ) } \\ =\quad \sum _{ i=1 }^{ 100 }{ (i\quad +\quad 5050) } \\ =\quad \sum _{ i=1 }^{ 100 }{ i } +\sum _{ i=1 }^{ 100 }{ 5050 } \\ =\quad 5050\quad +\quad 505000\\ =\quad 1010000\\

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...