2018 Factorials Madness

Determine the smallest positive integer n n such that the product of n n and 1 ! 2 ! 3 ! 2016 ! 2017 ! 2018 ! 1009 ! \frac{1!2!3!\dots2016!2017!2018!}{1009!} will be a perfect square.


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

X X
May 23, 2018

1 ! 2 ! 3 ! 2016 ! 2017 ! 2018 ! 1009 ! \frac{1!2!3!\dots2016!2017!2018!}{1009!} = ( 1 ! ) 2 × 2 × ( 3 ! ) 2 × 4 × ( 5 ! ) 2 × 6 × × ( 2017 ! ) 2 × 2018 1009 ! =\frac{(1!)^2\times2\times(3!)^2\times4\times(5!)^2\times6\times\cdots\times(2017!)^2\times2018}{1009!} = ( 1 ! 3 ! 5 ! 7 ! 2017 ! ) 2 × 2 × 4 × 6 × × 2018 1 × 2 × 3 × × 1009 =(1!3!5!7!\cdots2017!)^2\times\frac{2\times4\times6\times\cdots\times2018}{1\times2\times3\times\cdots\times1009} = ( 1 ! 3 ! 5 ! 7 ! 2017 ! ) 2 × 2 1009 = ( 1 ! 3 ! 5 ! 7 ! 2017 ! × 2 504 ) 2 × 2 =(1!3!5!7!\cdots2017!)^2\times2^{1009}=(1!3!5!7!\cdots2017!\times2^{504})^2\times2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...