∫ − ∞ ∞ e x 2 0 1 8 + 1 1 d x = ( 2 − 2 ⋅ 2 c / a ) ζ ( a 1 ) Γ ( a b )
where a , b , c are positive integers. Submit a + b + c .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
∫ − ∞ ∞ e x 2 0 1 8 + 1 1 d x = = = = = 2 ∫ 0 ∞ e x 2 0 1 8 + 1 1 d x (by symmetry) 2 ∫ 0 ∞ 1 − 1 + e − x 2 0 1 8 1 d x 2 ∫ 0 ∞ e − x 2 0 1 8 − e − 2 x 2 0 1 8 + e − 3 x 2 0 1 8 − . . . d x (using the series 1 + x 1 = 1 − x + x 2 − x 3 + . . . , see (i)) 2 Γ ( 2 0 1 8 2 0 1 9 ) k = 1 ∑ ∞ ( − 1 ) k ( k 2 0 1 8 1 1 ) (see (ii)) ( 2 − 2 × 2 2 0 1 8 2 0 1 7 ) Γ ( 2 0 1 8 2 0 1 9 ) ζ ( 2 0 1 8 1 ) (see (iii))
Thus, a = 2 0 1 8 , b = 2 0 1 9 , c = 2 0 1 8 , giving a + b + c = 6 0 5 4 .
(i) Notice that we can use the series expansion here because 0 < e − k x 2 0 1 8 ⩽ 1 for each positive integer k ⩾ 1 and real number x ⩾ 0 .
(ii) Let k be a positive integer. Then,
∫ 0 ∞ e − k x 2 0 1 8 d x = = = ∫ 0 ∞ 2 0 1 8 1 ( k 1 ) 2 0 1 8 1 u − 2 0 1 8 2 0 1 7 e − u d u ( u = k x 2 0 1 8 ⇒ d x d u = 2 0 1 8 1 ( k 1 ) 2 0 1 8 1 u − 2 0 1 8 2 0 1 7 ) ( k 1 ) 2 0 1 8 1 × 2 0 1 8 1 Γ ( 2 0 1 8 1 ) (using the definition of gamma integral, Γ ( s ) : = ∫ 0 ∞ t s − 1 e − t d t . ) ( k 1 ) 2 0 1 8 1 Γ ( 2 0 1 8 2 0 1 9 ) . The proof is complete.
(iii) k = 1 ∑ ∞ ( − 1 ) k ( k 2 0 1 8 1 1 ) = = = = = = 1 − 2 2 0 1 8 1 1 + 3 2 0 1 8 1 1 − 4 2 0 1 8 1 1 + . . . 1 + ( 2 2 0 1 8 1 1 − 2 2 0 1 8 1 2 ) + 3 2 0 1 8 1 1 − ( 4 2 0 1 8 1 1 − 4 2 0 1 8 1 2 ) + . . . ( 1 + 2 2 0 1 8 1 1 + 3 2 0 1 8 1 1 + 4 2 0 1 8 1 1 + . . . ) − 2 ( 2 2 0 1 8 1 1 + 4 2 0 1 8 1 1 + 6 2 0 1 8 1 1 + 8 2 0 1 8 1 1 . . . ) ζ ( 2 0 1 8 1 ) − 2 2 0 1 8 1 1 × 2 ( 1 + 2 2 0 1 8 1 1 + 3 2 0 1 8 1 1 + 4 2 0 1 8 1 1 . . . ) ζ ( 2 0 1 8 1 ) − 2 2 0 1 8 1 2 ζ ( 2 0 1 8 1 ) ( 1 − 2 2 0 1 8 2 0 1 7 1 ) ζ ( 2 0 1 8 1 ) .