2018 Gamma and Zeta

Calculus Level 3

1 e x 2018 + 1 d x = ( 2 2 2 c / a ) ζ ( 1 a ) Γ ( b a ) \int_{-\infty }^{\infty } \frac{1}{e^{x^{2018}}+1} \, dx=\left(2-2\cdot 2^{c/a}\right) \zeta \left(\frac{1}{a}\right) \Gamma \left(\frac{b}{a}\right)

where a , b , c a,b,c are positive integers. Submit a + b + c a+b+c .


The answer is 6054.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

敬全 钟
Dec 24, 2017

1 e x 2018 + 1 d x = 2 0 1 e x 2018 + 1 d x (by symmetry) = 2 0 1 1 1 + e x 2018 d x = 2 0 e x 2018 e 2 x 2018 + e 3 x 2018 . . . d x (using the series 1 1 + x = 1 x + x 2 x 3 + . . . , see (i)) = 2 Γ ( 2019 2018 ) k = 1 ( 1 ) k ( 1 k 1 2018 ) (see (ii)) = ( 2 2 × 2 2017 2018 ) Γ ( 2019 2018 ) ζ ( 1 2018 ) (see (iii)) \begin{aligned} \int^{\infty}_{-\infty}\frac{1}{e^{x^{2018}}+1}\ dx&=&2\int^{\infty}_{0}\frac{1}{e^{x^{2018}}+1}\ dx\quad\color{#3D99F6}{\text{(by symmetry)}}\\ &=&2\int^{\infty}_01-\frac{1}{1+e^{-x^{2018}}}\ dx\\ &=&2\int^{\infty}_0e^{-x^{2018}}-e^{-2x^{2018}}+e^{-3x^{2018}}-...\ dx\quad\color{#3D99F6}{\text{(using the series }}\color{#3D99F6}{\frac{1}{1+x}=1-x+x^2-x^3+...}\color{#3D99F6}{\text{, see (i))}}\\ &=&2\Gamma\left(\frac{2019}{2018}\right)\sum^{\infty}_{k=1}(-1)^k\left(\frac{1}{k^{\frac{1}{2018}}}\right)\quad\color{#3D99F6}{\text{(see (ii))}}\\ &=&\left(2-2\times2^{\frac{2017}{2018}}\right)\Gamma\left(\frac{2019}{2018}\right)\zeta\left(\frac{1}{2018}\right)\quad\color{#3D99F6}{\text{(see (iii))}} \end{aligned}

Thus, a = 2018 , b = 2019 , c = 2018 , a=2018, b=2019, c=2018, giving a + b + c = 6054. a+b+c=6054.


(i) Notice that we can use the series expansion here because 0 < e k x 2018 1 0<e^{-kx^{2018}}\leqslant1 for each positive integer k 1 k\geqslant1 and real number x 0. x\geqslant0.


(ii) Let k k be a positive integer. Then,

0 e k x 2018 d x = 0 1 2018 ( 1 k ) 1 2018 u 2017 2018 e u d u ( u = k x 2018 d u d x = 1 2018 ( 1 k ) 1 2018 u 2017 2018 ) = ( 1 k ) 1 2018 × 1 2018 Γ ( 1 2018 ) (using the definition of gamma integral, Γ ( s ) : = 0 t s 1 e t d t . ) = ( 1 k ) 1 2018 Γ ( 2019 2018 ) . \begin{aligned} \int^{\infty}_0e^{-kx^{2018}}\ dx&=&\int^{\infty}_0\frac{1}{2018}\left(\frac{1}{k}\right)^{\frac{1}{2018}}u^{-\frac{2017}{2018}}e^{-u}\ du\ \ \ \color{#3D99F6}\left({u=kx^{2018}\Rightarrow\frac{du}{dx}=\frac{1}{2018}\left(\frac{1}{k}\right)^{\frac{1}{2018}}u^{-\frac{2017}{2018}}}\right)\\ &=&\left(\frac{1}{k}\right)^{\frac{1}{2018}}\times\frac{1}{2018}\Gamma\left(\frac{1}{2018}\right)\ \ \ \color{#3D99F6}{\text{(using the definition of gamma integral, }\Gamma(s):=\int^{\infty}_0t^{s-1}e^{-t}\ dt.)}\\ &=&\left(\frac{1}{k}\right)^{\frac{1}{2018}}\Gamma\left(\frac{2019}{2018}\right). \end{aligned} The proof is complete.


(iii) k = 1 ( 1 ) k ( 1 k 1 2018 ) = 1 1 2 1 2018 + 1 3 1 2018 1 4 1 2018 + . . . = 1 + ( 1 2 1 2018 2 2 1 2018 ) + 1 3 1 2018 ( 1 4 1 2018 2 4 1 2018 ) + . . . = ( 1 + 1 2 1 2018 + 1 3 1 2018 + 1 4 1 2018 + . . . ) 2 ( 1 2 1 2018 + 1 4 1 2018 + 1 6 1 2018 + 1 8 1 2018 . . . ) = ζ ( 1 2018 ) 1 2 1 2018 × 2 ( 1 + 1 2 1 2018 + 1 3 1 2018 + 1 4 1 2018 . . . ) = ζ ( 1 2018 ) 2 2 1 2018 ζ ( 1 2018 ) = ( 1 1 2 2017 2018 ) ζ ( 1 2018 ) . \begin{aligned} \sum^{\infty}_{k=1}(-1)^k\left(\frac{1}{k^{\frac{1}{2018}}}\right)&=&1{\color{#3D99F6}{-\frac{1}{2^{\frac{1}{2018}}}}}+\frac{1}{3^{\frac{1}{2018}}}{\color{#3D99F6}{-\frac{1}{4^{\frac{1}{2018}}}}}+...\\ &=&1+{\color{#3D99F6}{\left(\frac{1}{2^{\frac{1}{2018}}}-\frac{2}{2^{\frac{1}{2018}}}\right)}}+\frac{1}{3^{\frac{1}{2018}}}-{\color{#3D99F6}{\left(\frac{1}{4^{\frac{1}{2018}}}-\frac{2}{4^{\frac{1}{2018}}}\right)}}+...\\ &=&\left(1+\frac{1}{2^{\frac{1}{2018}}}+\frac{1}{3^{\frac{1}{2018}}}+\frac{1}{4^{\frac{1}{2018}}}+...\right)-\color{magenta}{2\left(\frac{1}{2^{\frac{1}{2018}}}+\frac{1}{4^{\frac{1}{2018}}}+\frac{1}{6^{\frac{1}{2018}}}+\frac{1}{8^{\frac{1}{2018}}}...\right)}\\ &=&\zeta\left(\frac{1}{2018}\right)-\frac{1}{2^{\frac{1}{2018}}}\times\color{magenta}{2\left(1+\frac{1}{2^{\frac{1}{2018}}}+\frac{1}{3^{\frac{1}{2018}}}+\frac{1}{4^{\frac{1}{2018}}}...\right)}\\ &=&\zeta\left(\frac{1}{2018}\right)-\frac{2}{2^{\frac{1}{2018}}}\zeta\left(\frac{1}{2018}\right)\\ &=&\left(1-\frac{1}{2^{\frac{2017}{2018}}}\right)\zeta\left(\frac{1}{2018}\right). \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...