2018 times

Calculus Level 4

1 ( x 2 + 1 ) 2018 d x \large{\int_{-\infty}^{\infty} \dfrac{1}{\,(x^2+1)^{2018}}\,dx} If the value of the above integral can be expressed as a ! π ( b c c ! ) b \dfrac{\, a! \cdot \pi }{\,(b^{c}\cdot c!)^b} , for some positive integers a , b a,b and c c where b b is prime. Find the largest value of a + b + c a+b+c .


Inspiration


The answer is 6053.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Aug 22, 2018

Relevant wiki: Beta Function

I = 1 ( x 2 + 1 ) 2018 d x Since the integrand is even = 2 0 1 ( 1 + x 2 ) n + 1 d x Let n = 2017 = 0 u 1 2 ( 1 + u ) n + 1 d x Let u = x 2 d u = 2 x d x = B ( 1 2 , 2 n + 1 2 ) Beta function B ( j , k ) = 0 u j 1 ( 1 + u ) j + k = Γ ( 1 2 ) Γ ( 2 n + 1 2 ) Γ ( n + 1 ) B ( j , k ) = Γ ( j ) Γ ( k ) Γ ( j + k ) = π ( ( 2 n 1 ) ! ! 2 n π ) n ! where Γ ( ) is the gamma function. = ( 2 n ) ! π ( 2 n n ! ) 2 As ( 2 n 1 ) ! ! = ( 2 n ) ! 2 n n ! \begin{aligned} I & = \int_{-\infty}^\infty \frac 1{(x^2+1)^{2018}}\ dx & \small \color{#3D99F6} \text{Since the integrand is even} \\ & = 2\int_0^\infty \frac 1{(1+x^2)^{n+1}}\ dx & \small \color{#3D99F6} \text{Let }n = 2017 \\ & = \int_0^\infty \frac {u^{-\frac 12}}{(1+u)^{n+1}}\ dx & \small \color{#3D99F6} \text{Let }u = x^2 \implies du = 2x \ dx \\ & = B \left(\frac 12, \frac {2n+1}2\right) & \small \color{#3D99F6} \text{Beta function }B(j,k) = \int_0^\infty \frac {u^{j-1}}{(1+u)^{j+k}} \\ & = \frac {\Gamma \left(\frac 12 \right)\Gamma \left(\frac {2n+1}2 \right)}{\Gamma (n+1)} & \small \color{#3D99F6} B(j,k) = \frac {\Gamma(j)\Gamma(k)}{\Gamma(j+k)} \\ & = \frac {\sqrt \pi \left(\frac {(2n-1)!!}{2^n}\sqrt \pi \right)}{n!} & \small \color{#3D99F6} \text{where }\Gamma(\cdot) \text{ is the gamma function.} \\ & = \frac {(2n)!\pi}{\left(2^nn!\right)^2} & \small \color{#3D99F6} \text{As } (2n-1)!! = \frac {(2n)!}{2^n n!} \end{aligned}

Therefore, a + b + c = 2 n + 2 + n = 3 ( 2017 ) + 2 = 6053 a+b+c = 2n+2+n = 3(2017) + 2 = \boxed{6053} .

Naren Bhandari
Aug 21, 2018

Before to evaluate let's reduce the integral in the form of I n = 1 ( a 2 + x 2 ) n + 1 d x n N . I_n =\int \dfrac{1}{\,(a^2+x^2)^{n+1} }\,dx\qquad \forall n \in\mathbb N\,. Here we will integrate it by parts so let us make u u substitution as u = 1 ( a 2 + x 2 ) n u = \dfrac{1}{\,(a^2+x^2)^n} and d v = d u \,dv =\,du which follows as d u = 2 n x d x ( a 2 + x 2 ) n + 1 \,du = -\dfrac{2n x\,dx}{\,(a^2+x^2)^{n+1}} and v = x v=x . Hence, I n = x ( a 2 + x 2 ) n + 2 n x 2 ( a 2 + x 2 ) n + 1 d x = x ( a 2 + x 2 ) + 2 n a 2 + x 2 a 2 ( a 2 + x 2 ) n + 1 = x ( a 2 + x 2 ) + 2 n I n 2 n a 2 I n + 1 I n + 1 = 1 2 n a 2 x ( a 2 + x 2 ) n + 2 n 1 2 n a 2 I n \begin{aligned} I_n & = \dfrac{x}{\,(a^2+x^2)^n } +2n \int\dfrac{x^2}{\,(a^2+x^2)^{n+1}}\,dx \\& = \dfrac{x}{\,(a^2+x^2)}+ 2n\int \dfrac{\,a^2+x^2-a^2}{\,(a^2+x^2)^{n+1} } \\& = \dfrac{x}{\,(a^2+x^2)}+2nI_n -2na^2I_{n+1} \\ \therefore I_{n+1}& =\dfrac{1}{2na^2} \cdot \dfrac{x}{\,(a^2+x^2)^n}+\dfrac{2n-1}{2na^2} \cdot I_n\end{aligned} Set n = 2017 n=2017 and a = 1 a=1 we obtain I 2018 = 1 4036 x ( 1 + x 2 ) 2018 + 4033 4034 I 2017 I_{2018} = \dfrac{1}{4036} \cdot \dfrac{x}{\,(1+x^2)^{2018}}+\dfrac{4033}{4034} \cdot I_{2017} Now setting limits from -\infty to \infty We obtain the following I 2018 = 0 + 4033 4032 I 2017 = 0 + 4033 4031 4034 4032 I 2016 = 0 + 4033 4031 1 4036 4034 2 I 1 = ( 4033 ) ! ! ( 4034 ) ! ! π \begin{aligned} \int_{-\infty}^{\infty} I_{2018} & =0+\dfrac{4033}{4032}\int_{-\infty}^{\infty} I_{2017} = 0 +\dfrac{4033\cdot 4031}{4034\cdot 4032}\int_{-\infty}^{\infty} I_{2016 } \\& = 0 +\dfrac{4033\cdot 4031\cdots 1}{4036\cdot 4034\cdots 2 }\int_{-\infty}^{\infty} I_1 =\dfrac{\,(4033)!!}{(4034)!!}\pi\end{aligned} Since ( 2 n 1 ) ! ! ( 2 n ) ! ! = ( 2 n ) ! ( 2 n n ! ) 2 = 4034 ! π ( 2 2017 2017 ! ) 2 \dfrac{\,(2n-1)!!}{(2n)!!} = \dfrac{(2n)!}{(2^n n!)^2}=\dfrac{4034!\cdot \pi}{\,(2^{2017} \cdot 2017!)^2} Thus, a + b + c = 4034 + 2017 + 2 = 6053 a+b+c =4034+2017+2=\boxed{6053} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...