2018 welcomes freaky Polynomials!

Algebra Level 5

If x 3 a x 2 + b x + c = 0 x^3 - ax^2 + bx + c = 0 has the roots α 2 + β 3 + γ 4 \alpha^2 + { \beta }^{ 3 } + { \gamma }^{ 4 } , β 2 + γ 3 + α 4 { \beta }^{ 2 } + { \gamma }^{ 3 } + { \alpha }^{ 4 } , γ 2 + α 3 + β 4 { \gamma }^{ 2 } + \alpha ^{ 3 } + \beta ^{ 4 } , where α \alpha , β \beta and γ \gamma are the roots of the equation x 3 x 2 1 = 0 x^3 - x^2 - 1 = 0 , then what is the value of a + b + c a + b + c ?


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 19, 2017

Since α \alpha , β \beta and γ \gamma are roots of x 3 x 2 1 = 0 x^3-x^2-1=0 , by Vieta's formula , we have:

{ α + β + γ = 1 α β + β γ + γ α = 0 α β γ = 1 \begin{cases} \alpha + \beta + \gamma = 1 \\ \alpha \beta + \beta \gamma + \gamma \alpha = 0 \\ \alpha \beta \gamma = 1 \end{cases}

And that:

{ α 3 α 2 1 = 0 α 3 = α 2 + 1 , α 4 = α 2 + α + 1 β 3 β 2 1 = 0 β 3 = β 2 + 1 , β 4 = β 2 + β + 1 γ 3 γ 2 1 = 0 γ 3 = γ 2 + 1 , γ 4 = γ 2 + γ + 1 \begin{cases} \alpha^3 - \alpha^2 - 1 & = 0 & \implies \alpha^3 = \alpha^2 + 1, & \alpha^4 = \alpha^2 + \alpha + 1 \\ \beta^3 - \beta^2 - 1 & = 0 & \implies \beta^3 = \beta^2 + 1, & \beta^4 = \beta^2 + \beta + 1 \\ \gamma^3 - \gamma^2 - 1 & = 0 & \implies \gamma^3 = \gamma^2 + 1, & \gamma^4 = \gamma^2 + \gamma + 1 \end{cases}

Then the roots of x 3 a x 2 + b x + c = 0 x^3-ax^2 + bx + c =0 are:

{ α 2 + β 3 + γ 4 = α 2 + β 2 + 1 + γ 2 + γ + 1 = γ + 3 β 2 + γ 3 + α 4 = α + 3 γ 2 + α 3 + β 4 = β + 3 \begin{cases} \alpha^2 + \beta^3 + \gamma^4 = \alpha^2 + \beta^2 + 1 + \gamma^2 + \gamma + 1 = \gamma + 3 \\ \beta^2 + \gamma^3 + \alpha^4 = \alpha + 3 \\ \gamma^2 + \alpha^3 + \beta^4 = \beta + 3 \end{cases}

By Vieta's formula again:

a = α + 3 + β + 3 + γ + 3 = 10 b = ( α + 3 ) ( β + 3 ) + ( β + 3 ) ( γ + 3 ) + ( γ + 3 ) ( α + 3 ) = α β + β γ + γ α + 6 ( α + β + γ ) + 27 = 0 + 6 ( 1 ) + 27 = 33 c = ( α + 3 ) ( β + 3 ) ( γ + 3 ) = α β γ 3 ( α β + β γ + γ α ) 9 ( α + β + γ ) 27 = 1 3 ( 0 ) 9 ( 1 ) 27 = 37 \begin{aligned} a & = \alpha + 3 + \beta +3 + \gamma + 3 = 10 \\ b & = (\alpha + 3)(\beta +3)+ (\beta +3)(\gamma + 3) +(\gamma + 3)(\alpha + 3) \\ & = \alpha \beta + \beta \gamma + \gamma \alpha + 6(\alpha + \beta + \gamma) + 27 \\ & = 0+6(1) + 27 = 33 \\ c & = -(\alpha + 3)(\beta +3)(\gamma + 3) \\ & = - \alpha \beta \gamma - 3(\alpha \beta + \beta \gamma + \gamma \alpha) - 9(\alpha + \beta + \gamma) - 27 \\ & = - 1 - 3(0) - 9(1) - 27 = - 37 \end{aligned}

a + b + c = 10 + 33 37 = 6 \implies a+b+c = 10+33-37 = \boxed{6}

Great Solution. BTW you can calculate a+b+c much faster before calculating individual values of a,b,c.

Rishabh Deep Singh - 3 years, 5 months ago

Log in to reply

I was thinking about it. Give your solution or give me a hint.

Chew-Seong Cheong - 3 years, 5 months ago

By Vieta's formulas, we have: α + β + γ = 1 \alpha+\beta+\gamma=1 , α β + α γ + β γ = 0 \alpha\beta+\alpha\gamma+\beta\gamma=0 and α β γ = 1 \alpha\beta\gamma=1 . Let x 0 x_0 be a root of x 3 x 2 1 = 0 x^3-x^2-1=0 , then x 0 3 = x 0 2 + 1 x_0^3=x_0^2+1 and x 0 4 = x 0 3 + x 0 = x 0 2 + x 0 + 1 x_0^4=x_0^3+x_0=x_0^2+x_0+1 .

Let r 1 = α 2 + β 3 + γ 4 r_1=\alpha^2 + { \beta }^{ 3 } + { \gamma }^{ 4 } , r 2 = β 2 + γ 3 + α 4 r_2={ \beta }^{ 2 } + { \gamma }^{ 3 } + { \alpha }^{ 4 } and r 3 = γ 2 + α 3 + β 4 r_3={ \gamma }^{ 2 } + \alpha ^{ 3 } + \beta ^{ 4 } the new roots, then r 1 = α 2 + β 2 + γ 2 + γ + 2 = ( α + β + γ ) 2 2 ( α β + α γ + β γ ) + γ + 2 = γ + 3 r_1=\alpha^2+\beta^2+\gamma^2+\gamma+2=(\alpha+\beta+\gamma)^2-2(\alpha\beta+\alpha\gamma+\beta\gamma)+\gamma+2=\gamma+3 , similarly r 2 = α + 3 r_2=\alpha+3 and r 3 = β + 3 r_3=\beta+3 .

We see that the new roots are the old roots increased by 3, so let's do the change y = x + 3 x = y 3 y=x+3 \implies x=y-3 and substitute: ( y 3 ) 3 ( y 3 ) 2 1 = 0 y 3 10 y 2 + 33 y 37 = 0 (y-3)^3-(y-3)^2-1=0 \implies y^3-10y^2+33y-37=0 .

Finally, we get a = 10 a=10 , b = 33 b=33 and c = 37 c=-37 , making the answer 10 + 33 37 = 6 10+33-37=\boxed{6} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...