2019 IMC - Telescoping series

Calculus Level 3

Evaluate the product n = 3 ( n 3 + 3 n ) 2 n 6 64 . \prod_{n=3}^\infty \frac{(n^3+3n)^2}{n^6-64}.

72 7 \frac{72}{7} 36 7 \frac{36}{7} 18 7 \frac{18}{7} 12 7 \frac{12}{7}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jan 15, 2021

n = 3 ( n 3 + 3 n ) 2 n 6 64 = n = 3 n n ( n 2 + 3 ) ( n 2 + 3 ) ( n 2 ) ( n + 2 ) ( n 2 2 n + 4 ) ( n 2 + 2 n + 4 ) = n = 3 n n ( n 2 + 3 ) ( n 2 + 3 ) ( n 2 ) ( n + 2 ) ( ( n 1 ) 2 + 3 ) ( ( n + 1 ) 2 + 3 ) = n = 3 n n 2 n = 3 n n + 2 n = 3 n 2 + 3 ( n 1 ) 2 + 3 n = 3 n 2 + 3 ( n + 1 ) 2 + 3 = n = 1 n + 2 n n = 3 n n + 2 n = 2 ( n + 1 ) 2 + 3 n 2 + 3 n = 3 n 2 + 3 ( n + 1 ) 2 + 3 = 3 4 1 2 n = 3 ( n + 2 n n n + 2 1 ) 12 7 n = 3 ( ( n + 1 ) 2 + 3 n 2 + 3 n 2 + 3 ( n + 1 ) 2 + 3 1 ) = 72 7 \begin{aligned} \prod_{n=3}^\infty \frac {(n^3+3n)^2}{n^6-64} & = \prod_{n=3}^\infty \frac {n \cdot n (n^2+3)(n^2+3)}{(n-2)(n+2)(n^2-2n+4)(n^2+2n+4)} \\ & = \prod_{n=3}^\infty \frac {n \cdot n (n^2+3)(n^2+3)}{(n-2)(n+2)((n-1)^2+3)((n+1)^2+3)} \\ & = \prod_\blue{n=3}^\infty \frac n{n-2} \cdot \prod_{n=3}^\infty \frac n{n+2} \cdot \prod_\blue{n=3}^\infty \frac {n^2+3}{(n-1)^2+3} \cdot \prod_{n=3}^\infty \frac {n^2+3}{(n+1)^2+3} \\ & = \prod_\red{n=1}^\infty \frac {n+2}n \cdot \prod_{n=3}^\infty \frac n{n+2} \cdot \prod_\red{n=2}^\infty \frac {(n+1)^2+3}{n^2+3} \cdot \prod_{n=3}^\infty \frac {n^2+3}{(n+1)^2+3} \\ & = \frac {3 \cdot 4}{1 \cdot 2} \prod_\blue{n=3}^\infty \left(\cancel{\frac {n+2}n \cdot \frac n{n+2}} ^1\right) \cdot \frac {12}7 \prod_\blue{n=3}^\infty \left(\cancel{\frac {(n+1)^2+3}{n^2+3} \cdot \frac {n^2+3}{(n+1)^2+3}}^1 \right) \\ & = \boxed{\frac {72}7} \end{aligned}

Sathvik Acharya
Jan 15, 2021

Define the sequence { x n } \{x_n\} as, x n = ( n 3 + 3 n ) 2 n 6 64 x_n=\frac{(n^3+3n)^2}{n^6-64} The idea is to decompose x n x_n into simple fractions that might telescope. So we rewrite the denominator of the general term, as n 6 64 = ( n 3 + 8 ) ( n 3 8 ) = ( n + 2 ) ( n 2 2 n + 4 ) ( n 2 ) ( n 2 + 2 n + 4 ) = ( n + 2 ) ( ( n 1 ) 2 + 3 ) ( n 2 ) ( ( n + 1 ) 2 + 3 ) \begin{aligned} n^6-64&= (n^3+8)(n^3-8) \\ & =(n+2)(n^2-2n+4)(n-2)(n^2+2n+4) \\ &=(n+2)\cdot \left((n-1)^2+3\right)\cdot (n-2)\cdot \left((n+1)^2+3\right) \end{aligned} Since the denominator is a product of four terms, we shall try doing the same for the numerator. ( n 3 + 3 n ) 2 = ( n ( n 2 + 3 ) ) 2 = n 2 ( n 2 + 3 ) 2 = n n ( n 2 + 3 ) ( n 2 + 3 ) \begin{aligned} (n^3+3n)^2&=\left(n(n^2+3)\right)^2 \\ &=n^2(n^2+3)^2 \\ &=n\cdot n\cdot (n^2+3)\cdot (n^2+3) \end{aligned} So, the general term of the sequence is, x n = ( n 3 + 3 n ) 2 n 6 64 = n n ( n 2 + 3 ) ( n 2 + 3 ) ( n + 2 ) ( ( n 1 ) 2 + 3 ) ( n 2 ) ( ( n + 1 ) 2 + 3 ) = ( n n + 2 ) ( n n 2 ) ( n 2 + 3 ( n + 1 ) 2 + 3 ) ( n 2 + 3 ( n 1 ) 2 + 3 ) \begin{aligned} x_n=\frac{(n^3+3n)^2}{n^6-64} &=\frac{n\cdot n\cdot (n^2+3)\cdot (n^2+3)}{(n+2)\cdot \left((n-1)^2+3\right)\cdot (n-2)\cdot \left((n+1)^2+3\right)} \\ \\ &=\left(\frac{n}{n+2}\right)\cdot \left(\frac{n}{n-2}\right)\cdot \left(\frac{n^2+3}{(n+1)^2+3}\right)\cdot \left(\frac{n^2+3}{(n-1)^2+3}\right) \end{aligned} We shall use the following infinite products: n = 3 n n + 2 = lim k n = 3 k n n + 2 = lim k ( 3 5 × 4 6 × 5 7 × 6 8 × × k 1 k + 1 × k k + 2 ) = lim k 12 ( k + 1 ) ( k + 2 ) n = 3 n n 2 = lim k n = 3 k n n 2 = lim k ( 3 1 × 4 2 × 5 3 × 6 4 × × k 1 k 3 × k k 2 ) = lim k ( k 1 ) k 2 n = 3 n 2 + 3 ( n + 1 ) 2 + 3 = lim k n = 3 k n 2 + 3 ( n + 1 ) 2 + 3 = lim k ( 12 19 × 19 28 × 28 39 × × ( k 1 ) 2 + 3 k 2 + 3 × k 2 + 3 ( k + 1 ) 2 + 3 ) = lim k 12 ( k + 1 ) 2 + 3 n = 3 n 2 + 3 ( n 1 ) 2 + 3 = lim k n = 3 k n 2 + 3 ( n 1 ) 2 + 3 = lim k ( 12 7 × 19 12 × 28 19 × × ( k 1 ) 2 + 3 ( k 2 ) 2 + 3 × k 2 + 3 ( k 1 ) 2 + 3 ) = lim k k 2 + 3 7 \begin{aligned} &\prod_{n=3}^{\infty} \frac{n}{n+2}=\lim_{k\to \infty}\prod_{n=3}^{k} \frac{n}{n+2} =\lim_{k\to \infty} \left(\frac{3}{5}\times \frac{4}{6}\times\frac{5}{7}\times\frac{6}{8}\times \cdots \times \frac{k-1}{k+1} \times \frac{k}{k+2}\right) =\lim_{k\to \infty } \frac{12}{(k+1)(k+2)} \\ \\ &\prod_{n=3}^{\infty} \frac{n}{n-2}=\lim_{k\to \infty}\prod_{n=3}^{k} \frac{n}{n-2} =\lim_{k\to \infty} \left(\frac{3}{1}\times \frac{4}{2}\times\frac{5}{3}\times\frac{6}{4}\times \cdots \times \frac{k-1}{k-3} \times \frac{k}{k-2}\right) =\lim_{k\to \infty } \frac{(k-1)k}{2} \\ \\ &\prod_{n=3}^{\infty} \frac{n^2+3}{(n+1)^2+3}= \lim_{k\to \infty}\prod_{n=3}^{k} \frac{n^2+3}{(n+1)^2+3} =\lim_{k\to \infty} \left(\frac{12}{19}\times \frac{19}{28}\times\frac{28}{39}\times\cdots \times \frac{(k-1)^2+3}{k^2+3} \times \frac{k^2+3}{(k+1)^2+3}\right) =\lim_{k\to \infty} \frac{12}{(k+1)^2+3} \\ \\ &\prod_{n=3}^{\infty} \frac{n^2+3}{(n-1)^2+3}= \lim_{k\to \infty}\prod_{n=3}^{k} \frac{n^2+3}{(n-1)^2+3} =\lim_{k\to \infty} \left(\frac{12}{7}\times \frac{19}{12}\times\frac{28}{19}\times\cdots \times \frac{(k-1)^2+3}{(k-2)^2+3} \times \frac{k^2+3}{(k-1)^2+3}\right) =\lim_{k\to \infty} \frac{k^2+3}{7} \end{aligned} Therefore, the product of all terms of the sequence { x n } \{x_n\} is, n = 3 x n = ( n = 3 n n + 2 ) ( n = 3 n n 2 ) ( n = 3 n 2 + 3 ( n + 1 ) 2 + 3 ) ( n = 3 n 2 + 3 ( n 1 ) 2 + 3 ) = lim k ( 12 ( k + 1 ) ( k + 2 ) ( k 1 ) k 2 12 ( k + 1 ) 2 + 3 k 2 + 3 7 ) = lim k 72 ( k 2 1 ) ( k 2 + 3 ) 7 ( k 2 + 3 k + 2 ) ( k 2 + 2 k + 4 ) = 72 7 lim k ( 1 1 k 2 ) ( 1 + 3 k 2 ) ( 1 + 3 k + 2 k 2 ) ( 1 + 2 k + 4 k 2 ) = 72 7 \begin{aligned} \prod_{n=3}^{\infty} x_n &=\left(\prod_{n=3}^{\infty}\frac{n}{n+2}\right)\cdot \left(\prod_{n=3}^{\infty} \frac{n}{n-2} \right)\cdot \left(\prod_{n=3}^{\infty} \frac{n^2+3}{(n+1)^2+3}\right)\cdot \left(\prod_{n=3}^{\infty} \frac{n^2+3}{(n-1)^2+3}\right) \\ \\ &=\lim_{k\to \infty} \left( \frac{12}{(k+1)(k+2)}\cdot \frac{(k-1)k}{2}\cdot \frac{12}{(k+1)^2+3}\cdot \frac{k^2+3}{7}\right) \\ \\ &=\lim_{k\to \infty} \frac{72(k^2-1)(k^2+3)}{7(k^2+3k+2)(k^2+2k+4)} \\ \\ &=\frac{72}{7}\cdot \lim_{k\to \infty} \frac{\left(1-\dfrac{1}{k^2}\right) \left(1+\dfrac{3}{k^2}\right)}{\left(1+\dfrac{3}{k}+\dfrac{2}{k^2}\right)\left(1+\dfrac{2}{k}+\dfrac{4}{k^2}\right)} \\ &=\boxed{\frac{72}{7}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...