2019 is Product of Two Primes

gcd ( n , 2019 ) = 1 1 n 2 = a π b c \large \sum_{\gcd(n,2019)=1}\frac{1}{n^2}=\frac{a\pi^b}{c}

Find a + b + c a + b + c , where a a and c c are coprime positive integers.


The answer is 4680267.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Guilherme Niedu
Jan 6, 2019

2019 2019 have the following divisors: { 1 , 3 , 673 , 2019 } \{1, 3, 673, 2019 \} . So, every integer n n except for multiples of 3 3 and 673 673 have gcd ( n , 2019 ) = 1 \gcd(n,2019) = 1 .

Thus, we have to take the sum over all integer n n and then subtract n n multiple of 3 3 or 673 673 , i.e., n = 3 k n = 3k or n = 673 k n=673k . But by doing so we subtract two times the multiples of both 3 3 and 673 673 , i.e., the multiples of 3 673 = 2019 3 \cdot 673 = 2019 , or n = 2019 k n = 2019k . So we add them back. Then:

S = k = 1 1 k 2 k = 1 1 ( 3 k ) 2 k = 1 1 ( 673 k ) 2 + k = 1 1 ( 2019 k ) 2 \large \displaystyle S = \sum_{k=1}^{\infty} \frac{1}{k^2} - \sum_{k=1}^{\infty} \frac{1}{(3k)^2} - \sum_{k=1}^{\infty} \frac{1}{(673k)^2} + \sum_{k=1}^{\infty} \frac{1}{(2019k)^2}

S = ( 1 1 3 2 1 67 3 2 + 1 201 9 2 ) k = 1 1 k 2 \large \displaystyle S = \left ( 1 - \frac{1}{3^2} - \frac{1}{673^2} + \frac{1}{2019^2} \right ) \sum_{k=1}^{\infty} \frac{1}{k^2}

S = 1207808 1358787 π 2 6 \large \displaystyle S = \frac{1207808}{1358787} \cdot \frac{\pi^2}{6}

S = 603904 π 2 4076361 \color{#20A900} \boxed{ \large \displaystyle S = \frac{603904 \pi^2}{4076361} }

So:

a = 603904 , b = 2 , c = 4076361 , a + b + c = 4680267 \large \displaystyle \color{#3D99F6} a = 603904, b = 2, c = 4076361, \boxed{\large \displaystyle a+b+c = 4680267}

Julian Poon
Jan 7, 2019

S = n 3 , 673 1 n 2 = p is prime 3 , 673 n = 0 1 p 2 n = p is prime ( 1 p 2 ) 1 ( 1 3 2 ) ( 1 67 3 2 ) = ζ ( 2 ) ( 1 3 2 ) ( 1 67 3 2 ) = π 2 603904 4076361 \large S = \sum_{n \nmid 3,673 } \frac{1}{n^2} = \prod_{p \text{ is prime} \neq 3,673} \sum_{n=0}^{\infty} \frac{1}{p^{2n}} = \prod_{p \text{ is prime}} \left( 1 - p^{-2}\right)^{-1} \left( 1 - 3^{-2}\right)\left(1 - 673^{-2} \right) \\ \displaystyle \large= \zeta(2) \left( 1 - 3^{-2}\right)\left(1 - 673^{-2} \right) = \boxed{\pi^2\cdot\frac{603904}{4076361}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...