#2020 06 06#1?

Algebra Level 3

Let x = a b x = \dfrac ab be the solution to the equation 2 x 3 6 4 x 36 = x + 2 9 , \dfrac{2x-3}6 - \dfrac{4-x}{36} = \dfrac{x+2}9 , where a a and b b are coprime positive integers.

Which of the following options is correct?

a b = 54 a\cdot b=54 a b = 84 a-b=84 2 a 3 b = 11 2a-3b=11 a + b = 37 a+b=37 3 b a = 5 3b-a=-5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Zakir Husain
Jun 6, 2020

2 x 3 6 4 x 36 = x + 2 9 \frac{2x-3}{6}-\frac{4-x}{36}=\frac{x+2}{9} Multiply both sides by 36 36 36 × ( 2 x 3 ) 6 36 × ( 4 x ) 36 = 36 × ( x + 2 ) 9 \red{36}\times\frac{(2x-3)}{\red{6}}-\cancel{36}\times\frac{(4-x)}{\cancel{36}}=\red{36}\times\frac{(x+2)}{\red{9}} 12 x 18 4 + x = 4 x + 8 12x-18-4+x=4x+8 13 x 4 x = 8 + 18 + 4 = 8 + 22 = 30 13x-4x=8+18+4=8+22=30 9 x = 30 9x=30 x = 30 9 = 10 3 x=\frac{30}{9}=\boxed{\red{\frac{10}{3}}}

Mahdi Raza
Jun 6, 2020

2 x 3 6 4 x 36 = x + 2 9 6 ( 2 x 3 ) ( 4 x ) = 4 ( x + 2 ) ( ) × 36 9 x = 30 Simplify x = 10 3 = a b \begin{aligned} \dfrac{2x-3}{6} - \dfrac{4-x}{36} &= \dfrac{x+2}{9} \\ \\6(2x-3) - (4-x) &= 4(x+2) &\quad \color{#3D99F6} ()\times 36 \\ \\ 9x &= 30 &\quad \color{#3D99F6}\text{Simplify} \\ \\ x&= \dfrac{10}{3} = \dfrac{a}{b} \end{aligned}

2 ( 10 ) 3 ( 3 ) = 11 2 a 3 b = 11 2(10) - 3(3) = 11 \implies \boxed{2a - 3b =11}

12 x 18 4 + x 36 = x + 2 9 \dfrac{12x-18-4+x}{36}=\dfrac{x+2}{9}

13 x 22 4 = x + 2 \implies \dfrac{13x-22}{4}=x+2

13 x 22 = 4 x + 8 \implies 13x-22=4x+8

x = 10 3 \implies x=\dfrac{10}{3}

a = 10 , b = 3 \implies a=10, b=3

2 a 3 b = 11 \implies 2a-3b=11

a + b 37 \implies a+b\neq 37

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...