f ( x + 1 ) = ( 5 2 x − 1 + 1 ) ( x + 1 ) 2 f ( x )
Suppose we define a function of x as described above for x is a non-negative integer with f ( 0 ) = 5 − 1 .
If the value of f ( 2 0 2 0 ) can be written in form ( 5 p − 1 ) ( q ! ) 2 , for positive integers p and q , find p 2 q .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The blue step should be justified. Like Daniel mentioned, induction would be a simple approach :)
It can be proven fairly easily using Induction that your f ( n ) indeed is true for all n . Simply use the fact that ( n ! ) 2 ⋅ ( n + 1 ) 2 = ( ( n + 1 ) ! ) 2 and ( 5 2 n − 1 − 1 ) ( 5 2 n − 1 + 1 ) = 5 2 n − 1 .
Great minds
The function is
f ( x + 1 ) = ( 5 2 x − 1 + 1 ) ( x + 1 ) 2 f ( x )
Move f ( x ) to the left side
f ( x ) f ( x + 1 ) = ( 5 2 x − 1 + 1 ) ( x + 1 ) 2
For x = 0
f ( 0 ) f ( 1 ) = ( 5 2 − 1 + 1 ) ( 1 ) 2
For x = 1
f ( 1 ) f ( 2 ) = ( 5 2 0 + 1 ) ( 2 ) 2
For x = 2
f ( 2 ) f ( 3 ) = ( 5 2 1 + 1 ) ( 3 ) 2
Do it until x = 2 0 1 9
f ( 2 0 1 9 ) f ( 2 0 2 0 ) = ( 5 2 2 0 1 8 + 1 ) ( 2 0 2 0 ) 2
Mutiply all the functions
f ( 0 ) f ( 1 ) × f ( 1 ) f ( 2 ) × . . . × f ( 2 0 1 9 ) f ( 2 0 2 0 ) = ( 5 2 − 1 + 1 ) ( 1 ) 2 × ( 5 2 0 + 1 ) ( 2 ) 2 × . . . × ( 5 2 2 0 1 8 + 1 ) ( 2 0 2 0 ) 2
f ( 0 ) f ( 1 ) × f ( 1 ) f ( 2 ) × . . . × f ( 2 0 1 9 ) f ( 2 0 2 0 ) = ( 5 2 − 1 + 1 ) ( 5 2 0 + 1 ) ( 5 2 1 + 1 ) . . . ( 5 2 2 0 1 8 + 1 ) × ( 1 ) 2 ( 2 ) 2 ( 3 ) 2 . . . ( 2 0 2 0 ) 2
f ( 0 ) f ( 1 ) × f ( 1 ) f ( 2 ) × . . . × f ( 2 0 1 9 ) f ( 2 0 2 0 ) = ( 5 2 − 1 + 1 ) ( 5 2 0 + 1 ) ( 5 2 1 + 1 ) . . . ( 5 2 2 0 1 8 + 1 ) × ( 1 × 2 × 3 × . . . × 2 0 2 0 ) 2
f ( 0 ) f ( 1 ) × f ( 1 ) f ( 2 ) × . . . × f ( 2 0 1 9 ) f ( 2 0 2 0 ) = ( 5 2 − 1 + 1 ) ( 5 2 0 + 1 ) ( 5 2 1 + 1 ) . . . ( 5 2 2 0 1 8 + 1 ) × ( 2 0 2 0 ! ) 2
Then f ( 1 ) until f ( 2 0 1 9 ) will be eliminated, f ( 0 ) and f ( 2 0 2 0 ) will remain
f ( 0 ) f ( 2 0 2 0 ) = ( 5 2 − 1 + 1 ) ( 5 2 0 + 1 ) ( 5 2 1 + 1 ) . . . ( 5 2 2 0 1 8 + 1 ) × ( 2 0 2 0 ! ) 2
Remember f ( 0 ) = 5 − 1 = 5 2 1 − 1 = 5 2 − 1 − 1
5 2 − 1 − 1 f ( 2 0 2 0 ) = ( 5 2 − 1 + 1 ) ( 5 2 0 + 1 ) ( 5 2 1 + 1 ) . . . ( 5 2 2 0 1 8 + 1 ) × ( 2 0 2 0 ! ) 2
Move 5 2 − 1 − 1 to the right side
f ( 2 0 2 0 ) = ( 5 2 − 1 − 1 ) ( 5 2 − 1 + 1 ) ( 5 2 0 + 1 ) ( 5 2 1 + 1 ) . . . ( 5 2 2 0 1 8 + 1 ) × ( 2 0 2 0 ! ) 2
Because ( a + b ) ( a − b ) = a 2 − b 2 so
f ( 2 0 2 0 ) = ( 5 2 − 1 − 1 ) ( 5 2 − 1 + 1 ) ( 5 2 0 + 1 ) ( 5 2 1 + 1 ) . . . ( 5 2 2 0 1 8 + 1 ) × ( 2 0 2 0 ! ) 2
f ( 2 0 2 0 ) = ( 5 2 0 − 1 ) ( 5 2 0 + 1 ) ( 5 2 1 + 1 ) . . . ( 5 2 2 0 1 8 + 1 ) × ( 2 0 2 0 ! ) 2
f ( 2 0 2 0 ) = ( 5 2 1 − 1 ) ( 5 2 1 + 1 ) . . . ( 5 2 2 0 1 8 + 1 ) × ( 2 0 2 0 ! ) 2
until
f ( 2 0 2 0 ) = ( 5 2 2 0 1 8 − 1 ) ( 5 2 2 0 1 8 + 1 ) × ( 2 0 2 0 ! ) 2
f ( 2 0 2 0 ) = ( 5 2 2 0 1 9 − 1 ) × ( 2 0 2 0 ! ) 2
So, p = 2 2 0 1 9 and q = 2 0 2 0 , then
p 2 q = 2 2 0 1 9 2 2 0 2 0 = 2
*cmiiw
f ( x + 1 ) = ( 5 2 x − 1 + 1 ) ( x + 1 ) 2 f ( x )
So, f ( x ) = ( 5 2 x − 2 + 1 ) ( x ) 2 f ( x − 1 )
f ( x ) = ( 5 2 x − 2 + 1 ) ( x ) 2 ( 5 2 x − 3 + 1 ) ( x − 1 ) 2 f ( x − 2 )
f ( x ) = ( 5 2 x − 2 + 1 ) ( 5 2 x − 3 + 1 ) ( 5 2 x − 4 + 1 ) . . . ( 5 2 − 1 + 1 ) ( x ! ) 2 f ( 0 )
f ( x ) = ( 5 2 x − 2 + 1 ) ( 5 2 x − 3 + 1 ) ( 5 2 x − 4 + 1 ) . . . ( 5 2 − 1 + 1 ) ( x ! ) 2 ( 5 2 − 1 − 1 )
f ( x ) = ( 5 2 x − 1 − 1 ) ( x ! ) 2
With x = 2 0 2 0 , q = 2 0 2 0 and p = 2 2 0 1 9
p 2 q = 2 2 0 1 9 2 2 0 2 0 = 2
It is easy to guess that the function by the recurence relation given.
By induction it is proven that f ( x ) = ( 5 2 x − 1 − 1 ) ( x ! ) 2 ∀ x ∈ N .
Thus by inserting x = 2 0 2 0 we can easily ge p = 2 2 0 1 9 and q = 2 0 2 0 .
Therefore, p 2 q = 2 .
Problem Loading...
Note Loading...
Set Loading...
f ( 0 ) f ( 1 ) f ( 2 ) f ( 3 ) f ( 4 ) f ( 5 ) ⇒ f ( n ) ⇒ f ( 2 0 2 0 ) = 5 − 1 = ( 5 + 1 ) ( 1 2 ) ( 5 − 1 ) = ( 5 1 + 1 ) ( 2 2 ) ( 5 1 − 1 ) ( 1 2 ) = ( 5 2 + 1 ) ( 5 2 − 1 ) ( 3 ! ) 2 = ( 5 4 + 1 ) ( 5 4 − 1 ) ( 4 ! ) 2 = ( 5 8 + 1 ) ( 5 8 − 1 ) ( 5 ! ) 2 = ( 5 2 n − 1 − 1 ) ( n ! ) 2 = ( 5 2 2 0 1 9 − 1 ) ( 2 0 2 0 ! ) 2 = ( 5 1 − 1 ) ( 1 2 ) = ( 5 2 − 1 ) ( 2 ! ) 2 = ( 5 4 − 1 ) ( 3 ! ) 2 = ( 5 8 − 1 ) ( 4 ! ) 2 = ( 5 1 6 − 1 ) ( 5 ! ) 2 = ( 5 2 0 − 1 ) ( 1 ! ) 2 = ( 5 2 1 − 1 ) ( 2 ! ) 2 = ( 5 2 2 − 1 ) ( 3 ! ) 2 = ( 5 2 3 − 1 ) ( 4 ! ) 2 = ( 5 2 4 − 1 ) ( 5 ! ) 2
⇒ p = 2 2 0 1 9 ⇒ q = 2 0 2 0 ⇒ p 2 q = 2 2 0 1 9 2 2 0 2 0 = 2