2020? But it's still 2015!

Algebra Level 4

f ( x + 1 ) = ( 5 2 x 1 + 1 ) ( x + 1 ) 2 f ( x ) \large f(x+1) = (5^{2^{x-1}} + 1)(x+1)^{2}f(x)

Suppose we define a function of x x as described above for x x is a non-negative integer with f ( 0 ) = 5 1 f(0)=\sqrt{5} - 1 .

If the value of f ( 2020 ) f(2020) can be written in form ( 5 p 1 ) ( q ! ) 2 (5^{p} - 1)(q!)^{2} , for positive integers p p and q q , find 2 q p \frac{2^{q}}{p} .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Jul 11, 2015

f ( 0 ) = 5 1 f ( 1 ) = ( 5 + 1 ) ( 1 2 ) ( 5 1 ) = ( 5 1 1 ) ( 1 2 ) = ( 5 2 0 1 ) ( 1 ! ) 2 f ( 2 ) = ( 5 1 + 1 ) ( 2 2 ) ( 5 1 1 ) ( 1 2 ) = ( 5 2 1 ) ( 2 ! ) 2 = ( 5 2 1 1 ) ( 2 ! ) 2 f ( 3 ) = ( 5 2 + 1 ) ( 5 2 1 ) ( 3 ! ) 2 = ( 5 4 1 ) ( 3 ! ) 2 = ( 5 2 2 1 ) ( 3 ! ) 2 f ( 4 ) = ( 5 4 + 1 ) ( 5 4 1 ) ( 4 ! ) 2 = ( 5 8 1 ) ( 4 ! ) 2 = ( 5 2 3 1 ) ( 4 ! ) 2 f ( 5 ) = ( 5 8 + 1 ) ( 5 8 1 ) ( 5 ! ) 2 = ( 5 16 1 ) ( 5 ! ) 2 = ( 5 2 4 1 ) ( 5 ! ) 2 f ( n ) = ( 5 2 n 1 1 ) ( n ! ) 2 f ( 2020 ) = ( 5 2 2019 1 ) ( 2020 ! ) 2 \begin{aligned} f(0) & = \sqrt{5} - 1 \\ f(1) & = (\sqrt{5} + 1) (1^2) (\sqrt{5} - 1) & = (5^1 - 1)(1^2) & \color{#3D99F6}{= (5^{2^0}-1)(1!)^2} \\ f(2) & = (5^1 + 1) (2^2) (5^1 - 1)(1^2) & = (5^2 -1) (2!)^2 & \color{#3D99F6}{= (5^{2^1}-1)(2!)^2} \\ f(3) & = (5^2 + 1)(5^2 -1) (3!)^2 & = (5^4 - 1)(3!)^2 & \color{#3D99F6}{= (5^{2^2}-1)(3!)^2} \\ f(4) & = (5^4 + 1)(5^4 -1) (4!)^2 & = (5^8 - 1)(4!)^2 & \color{#3D99F6}{= (5^{2^3}-1)(4!)^2} \\ f(5) & = (5^8 + 1)(5^8 -1) (5!)^2 & = (5^{16} - 1)(5!)^2 & \color{#3D99F6}{= (5^{2^4}-1)(5!)^2} \\ \color{#3D99F6}{\Rightarrow f(n)} & \color{#3D99F6}{ = (5^{2^{n-1}} -1)(n!)^2 } \\ \Rightarrow f(2020) & = (5^{2^{2019}} -1)(2020!)^2 \end{aligned}

p = 2 2019 q = 2020 2 q p = 2 2020 2 2019 = 2 \Rightarrow p = 2^{2019} \quad \Rightarrow q = 2020 \quad \Rightarrow \dfrac{2^q}{p} = \dfrac {2^{2020}}{2^{2019}} = \boxed{2}

Moderator note:

The blue step should be justified. Like Daniel mentioned, induction would be a simple approach :)

It can be proven fairly easily using Induction that your f ( n ) f(n) indeed is true for all n n . Simply use the fact that ( n ! ) 2 ( n + 1 ) 2 = ( ( n + 1 ) ! ) 2 (n!)^2\cdot (n+1)^2=((n+1)!)^2 and ( 5 2 n 1 1 ) ( 5 2 n 1 + 1 ) = 5 2 n 1 (5^{2^{n-1}}-1)(5^{2^{n-1}}+1)=5^{2^n}-1 .

Daniel Liu - 5 years, 11 months ago

Great minds

Aakash Khandelwal - 5 years, 11 months ago

The function is

f ( x + 1 ) = ( 5 2 x 1 + 1 ) ( x + 1 ) 2 f ( x ) f(x+1) = (5^{2^{x-1}} + 1)(x+1)^{2}f(x)

Move f ( x ) f(x) to the left side

f ( x + 1 ) f ( x ) = ( 5 2 x 1 + 1 ) ( x + 1 ) 2 \frac{f(x+1)}{f(x)} = (5^{2^{x-1}} + 1)(x+1)^{2}

For x = 0 x=0

f ( 1 ) f ( 0 ) = ( 5 2 1 + 1 ) ( 1 ) 2 \frac{f(1)}{f(0)} = (5^{2^{-1}} + 1)(1)^{2}

For x = 1 x=1

f ( 2 ) f ( 1 ) = ( 5 2 0 + 1 ) ( 2 ) 2 \frac{f(2)}{f(1)} = (5^{2^{0}} + 1)(2)^{2}

For x = 2 x=2

f ( 3 ) f ( 2 ) = ( 5 2 1 + 1 ) ( 3 ) 2 \frac{f(3)}{f(2)} = (5^{2^{1}} + 1)(3)^{2}

Do it until x = 2019 x=2019

f ( 2020 ) f ( 2019 ) = ( 5 2 2018 + 1 ) ( 2020 ) 2 \frac{f(2020)}{f(2019)} = (5^{2^{2018}} + 1)(2020)^{2}

Mutiply all the functions

f ( 1 ) f ( 0 ) × f ( 2 ) f ( 1 ) × . . . × f ( 2020 ) f ( 2019 ) = ( 5 2 1 + 1 ) ( 1 ) 2 × ( 5 2 0 + 1 ) ( 2 ) 2 × . . . × ( 5 2 2018 + 1 ) ( 2020 ) 2 \frac{f(1)}{f(0)} \times \frac{f(2)}{f(1)} \times ... \times \frac{f(2020)}{f(2019)} = (5^{2^{-1}} + 1)(1)^{2} \times (5^{2^{0}} + 1)(2)^{2} \times ... \times (5^{2^{2018}} + 1)(2020)^{2}

f ( 1 ) f ( 0 ) × f ( 2 ) f ( 1 ) × . . . × f ( 2020 ) f ( 2019 ) = ( 5 2 1 + 1 ) ( 5 2 0 + 1 ) ( 5 2 1 + 1 ) . . . ( 5 2 2018 + 1 ) × ( 1 ) 2 ( 2 ) 2 ( 3 ) 2 . . . ( 2020 ) 2 \frac{f(1)}{f(0)} \times \frac{f(2)}{f(1)} \times ... \times \frac{f(2020)}{f(2019)} = (5^{2^{-1}} + 1)(5^{2^{0}} + 1)(5^{2^{1}} + 1)...(5^{2^{2018}} + 1) \times (1)^{2}(2)^{2}(3)^{2}...(2020)^{2}

f ( 1 ) f ( 0 ) × f ( 2 ) f ( 1 ) × . . . × f ( 2020 ) f ( 2019 ) = ( 5 2 1 + 1 ) ( 5 2 0 + 1 ) ( 5 2 1 + 1 ) . . . ( 5 2 2018 + 1 ) × ( 1 × 2 × 3 × . . . × 2020 ) 2 \frac{f(1)}{f(0)} \times \frac{f(2)}{f(1)} \times ... \times \frac{f(2020)}{f(2019)} = (5^{2^{-1}} + 1)(5^{2^{0}} + 1)(5^{2^{1}} + 1)...(5^{2^{2018}} + 1) \times (1 \times 2 \times 3 \times ... \times 2020)^{2}

f ( 1 ) f ( 0 ) × f ( 2 ) f ( 1 ) × . . . × f ( 2020 ) f ( 2019 ) = ( 5 2 1 + 1 ) ( 5 2 0 + 1 ) ( 5 2 1 + 1 ) . . . ( 5 2 2018 + 1 ) × ( 2020 ! ) 2 \frac{f(1)}{f(0)} \times \frac{f(2)}{f(1)} \times ... \times \frac{f(2020)}{f(2019)} = (5^{2^{-1}} + 1)(5^{2^{0}} + 1)(5^{2^{1}} + 1)...(5^{2^{2018}} + 1) \times (2020!)^{2}

Then f ( 1 ) f(1) until f ( 2019 ) f(2019) will be eliminated, f ( 0 ) f(0) and f ( 2020 ) f(2020) will remain

f ( 2020 ) f ( 0 ) = ( 5 2 1 + 1 ) ( 5 2 0 + 1 ) ( 5 2 1 + 1 ) . . . ( 5 2 2018 + 1 ) × ( 2020 ! ) 2 \frac{f(2020)}{f(0)} = (5^{2^{-1}} + 1)(5^{2^{0}} + 1)(5^{2^{1}} + 1)...(5^{2^{2018}} + 1) \times (2020!)^{2}

Remember f ( 0 ) = 5 1 = 5 1 2 1 = 5 2 1 1 f(0) = \sqrt{5} - 1 = 5^{\frac{1}{2}} - 1 = 5^{2^{-1}} - 1

f ( 2020 ) 5 2 1 1 = ( 5 2 1 + 1 ) ( 5 2 0 + 1 ) ( 5 2 1 + 1 ) . . . ( 5 2 2018 + 1 ) × ( 2020 ! ) 2 \frac{f(2020)}{5^{2^{-1}} - 1} = (5^{2^{-1}} + 1)(5^{2^{0}} + 1)(5^{2^{1}} + 1)...(5^{2^{2018}} + 1) \times (2020!)^{2}

Move 5 2 1 1 5^{2^{-1}} - 1 to the right side

f ( 2020 ) = ( 5 2 1 1 ) ( 5 2 1 + 1 ) ( 5 2 0 + 1 ) ( 5 2 1 + 1 ) . . . ( 5 2 2018 + 1 ) × ( 2020 ! ) 2 f(2020) = (5^{2^{-1}} - 1)(5^{2^{-1}} + 1)(5^{2^{0}} + 1)(5^{2^{1}} + 1)...(5^{2^{2018}} + 1) \times (2020!)^{2}

Because ( a + b ) ( a b ) = a 2 b 2 (a+b)(a-b) = a^{2} - b^{2} so

f ( 2020 ) = ( 5 2 1 1 ) ( 5 2 1 + 1 ) ( 5 2 0 + 1 ) ( 5 2 1 + 1 ) . . . ( 5 2 2018 + 1 ) × ( 2020 ! ) 2 f(2020) = (5^{2^{-1}} - 1)(5^{2^{-1}} + 1)(5^{2^{0}} + 1)(5^{2^{1}} + 1)...(5^{2^{2018}} + 1) \times (2020!)^{2}

f ( 2020 ) = ( 5 2 0 1 ) ( 5 2 0 + 1 ) ( 5 2 1 + 1 ) . . . ( 5 2 2018 + 1 ) × ( 2020 ! ) 2 f(2020) = (5^{2^{0}} - 1)(5^{2^{0}} + 1)(5^{2^{1}} + 1)...(5^{2^{2018}} + 1) \times (2020!)^{2}

f ( 2020 ) = ( 5 2 1 1 ) ( 5 2 1 + 1 ) . . . ( 5 2 2018 + 1 ) × ( 2020 ! ) 2 f(2020) = (5^{2^{1}} - 1)(5^{2^{1}} + 1)...(5^{2^{2018}} + 1) \times (2020!)^{2}

until

f ( 2020 ) = ( 5 2 2018 1 ) ( 5 2 2018 + 1 ) × ( 2020 ! ) 2 f(2020) = (5^{2^{2018}} - 1)(5^{2^{2018}} + 1) \times (2020!)^{2}

f ( 2020 ) = ( 5 2 2019 1 ) × ( 2020 ! ) 2 f(2020) = (5^{2^{2019}} - 1) \times (2020!)^{2}

So, p = 2 2019 p = 2^{2019} and q = 2020 q = 2020 , then

2 q p = 2 2020 2 2019 = 2 \frac{2^{q}}{p} = \frac{2^{2020}}{2^{2019}} = \boxed{2}

*cmiiw

Roman Frago
Jul 13, 2015

f ( x + 1 ) = ( 5 2 x 1 + 1 ) ( x + 1 ) 2 f ( x ) \large f(x+1) = (5^{2^{x-1}} + 1)(x+1)^{2}f(x)

So, f ( x ) = ( 5 2 x 2 + 1 ) ( x ) 2 f ( x 1 ) f(x) = (5^{2^{x-2}} + 1)(x)^{2}f(x-1)

f ( x ) = ( 5 2 x 2 + 1 ) ( x ) 2 ( 5 2 x 3 + 1 ) ( x 1 ) 2 f ( x 2 ) f(x) = (5^{2^{x-2}} + 1)(x)^{2}(5^{2^{x-3}} + 1)(x-1)^{2}f(x-2)

f ( x ) = ( 5 2 x 2 + 1 ) ( 5 2 x 3 + 1 ) ( 5 2 x 4 + 1 ) . . . ( 5 2 1 + 1 ) ( x ! ) 2 f ( 0 ) f(x) = (5^{2^{x-2}} + 1)(5^{2^{x-3}} + 1)(5^{2^{x-4}} + 1)...(5^{2^{-1}} + 1)(x!)^{2}f(0)

f ( x ) = ( 5 2 x 2 + 1 ) ( 5 2 x 3 + 1 ) ( 5 2 x 4 + 1 ) . . . ( 5 2 1 + 1 ) ( x ! ) 2 ( 5 2 1 1 ) f(x) = (5^{2^{x-2}} + 1)(5^{2^{x-3}} + 1)(5^{2^{x-4}} + 1)...(5^{2^{-1}} + 1)(x!)^{2}(5^{2^{-1}} -1)

f ( x ) = ( 5 2 x 1 1 ) ( x ! ) 2 f(x) = (5^{2^{x-1}} - 1)(x!)^{2}

With x = 2020 x=2020 , q = 2020 q=2020 and p = 2 2019 p=2^{2019}

2 q p = 2 2020 2 2019 = 2 \frac{2^{q}}{p}=\frac{2^{2020}}{2^{2019}}=2

Billy Sugiarto
Jul 11, 2015

It is easy to guess that the function by the recurence relation given.

By induction it is proven that f ( x ) = ( 5 2 x 1 1 ) ( x ! ) 2 x N f(x) = (5^{2^{x-1}} - 1)(x!)^{2} \forall x \in N .

Thus by inserting x = 2020 x = 2020 we can easily ge p = 2 2019 p = 2^{2019} and q = 2020 q = 2020 .

Therefore, 2 q p = 2 \frac{2^{q}}{p} = 2 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...