202020/202021?

Geometry Level 4

Suppose a , b , c a, b, c are real numbers satisfying { a + b + c = 7 a 2 + b 2 + c 2 = 33. \begin{cases} a + b + c = 7 \\ a^2 + b^2 + c^2 = 33. \end{cases}

Let f ( a ) = sin ( a 2 ) 202020 202021 f(a) = \sin(a - 2) - \dfrac{202020}{202021} , where a a is bounded by the parameters found above.

Given that a 3 \lfloor a^3 \rfloor has only 1 possible value when f ( a ) 0 f(a)\ge 0 , find a 3 \lfloor a^3 \rfloor .


The answer is 45.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chris Lewis
Feb 23, 2021

This question has two parts, really. First we need to find the range of possible a a values; then solve f ( a ) 0 f(a)\ge0 in this range.


We have b + c = 7 a b+c=7-a

Squaring, b 2 + 2 b c + c 2 = 49 14 a + a 2 b^2+2bc+c^2=49-14a+a^2

Also, b 2 + c 2 = 33 a 2 b^2+c^2=33-a^2 ; substituting in,

33 a 2 + 2 b c = 49 14 a + a 2 b c = a 2 7 a + 8 \begin{aligned} 33-a^2+2bc&=49-14a+a^2 \\ bc&=a^2-7a+8 \end{aligned}

So b , c b,c are roots of the quadratic x 2 ( 7 a ) x + ( a 2 7 a + 8 ) = 0 x^2-(7-a)x+\left(a^2-7a+8\right)=0

For this to have real roots, its discriminant must be non-negative; ie ( 7 a ) 2 4 ( a 2 7 a + 8 ) 0 (7-a)^2-4\left(a^2-7a+8\right) \ge 0

Tidying up, this is ( a + 1 ) ( 17 3 a ) 0 (a+1)(17-3a)\ge 0

with solution 1 a 17 3 -1\le a \le\frac{17}{3} .


Now we turn to solving f ( a ) 0 f(a)\ge0 on this interval. First find the roots; we have sin ( a 2 ) 202020 202021 = 0 \sin(a-2)-\frac{202020}{202021} =0

It's easy to check that the only roots in the interval are a 3.5676 a\approx3.5676 and a 3.5739 a\approx 3.5739 .

The cubes of these are, respectively, around 45.41 45.41 and 45.65 45.65 ; so the unique value of a 3 = 45 \left \lfloor a^3 \right \rfloor=\boxed{45} .

Got sniped... I did not intend to post the same solution as yours.

Sathvik Acharya - 3 months, 2 weeks ago

Log in to reply

No worries! Happens all the time.

Chris Lewis - 3 months, 2 weeks ago
Sathvik Acharya
Feb 23, 2021

{ a + b + c = 7 ( 1 ) a 2 + b 2 + c 2 = 33 ( 2 ) sin ( a 2 ) 202020 202021 ( 3 ) \begin{cases} a+b+c=7 && (1) \\ \\ a^2+b^2+c^2=33 &&(2) \\ \\ \sin(a-2)\ge \dfrac{202020}{202021 } && (3) \end{cases} Using equation ( 1 ) (1) and ( 2 ) (2) , ( a + b + c ) 2 = 7 2 a 2 + b 2 + c 2 + 2 a ( b + c ) + 2 b c = 49 33 + 2 a ( 7 a ) + 2 b c = 49 14 a 2 a 2 + 2 b c = 16 \begin{aligned} (a+b+c)^2&=7^2 \\ a^2+b^2+c^2+2a(b+c)+2bc&=49 \\ 33+2a(7-a)+2bc&=49 \\ 14a-2a^2+2bc&=16 \end{aligned} In equation ( 2 ) (2) , applying the AM-GM inequality, b 2 + c 2 2 b c 33 a 2 2 b c 33 a 2 16 ( 14 a 2 a 2 ) 3 a 2 + 14 a + 17 0 1 a 17 3 \begin{aligned} \frac{b^2+c^2}{2}\ge bc&\implies 33-a^2\ge 2bc \\ &\implies 33-a^2\ge 16-(14a-2a^2) \\ &\implies -3a^2+14a+17\ge 0 \\ &\therefore \; -1\le a\le \frac{17}{3} \end{aligned} Combining this with equation ( 3 ) (3) , sin 1 ( 202020 202021 ) + 2 a 2 + π sin 1 ( 202020 202021 ) 3.5676... a 3.5739... 45.407... a 45.648... \begin{aligned} \sin^{-1} \left(\frac{202020}{202021 }\right)+2&\le a\le 2+\pi-\sin^{-1} \left(\frac{202020}{202021 }\right) \\ \implies 3.5676...&\le a\le 3.5739... \\ \implies 45.407...&\le a \le 45.648... \end{aligned} Therefore, the only possible value of a 3 \lfloor a^3\rfloor is 45 \boxed{45}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...