∫ 0 ∞ 1 + x 6 ln ( x ) d x = − a b π 2
The equation above holds true for positive integers a and b , where b is square-free. Find a − 2 b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let ω = e π i / 6 . Let I be the integral we want. Then take the pie-piece contour C from r to R , then R to R ω 2 in a circular arc, then R ω 2 to r ω 2 , then r ω 2 to r in a circular arc. As R → ∞ , the integral over the outer arc goes to 0 , and as r → 0 , the integral over the inner arc goes to 0 (it's approximated by a constant times r ln ( r ) , which does go to 0 by L'Hopital). The integral over C equals 2 π i times the residue at the one pole inside, namely z = ω . Putting this all together gives ∫ 0 ∞ 1 + x 6 ln ( x ) d x − ∫ 0 ∞ 1 + x 6 ln ( x ) + i π / 3 ω 2 d x I ( 1 − ω 2 ) − ∫ 0 ∞ 1 + x 6 i π / 3 ω 2 d x I ( ω 1 0 − 1 ) − ∫ 0 ∞ 1 + x 6 i π / 3 d x = 2 π i R e s z = ω 1 + z 6 ln ( z ) = 2 π i 6 ω 5 π i / 6 = − 1 8 π 2 ω 5 and now we can take real parts, to get − I / 2 I I = − 1 8 π 2 ( − 3 / 2 ) = − 1 8 π 2 3 = − 6 3 π 2 , so the answer is 6 − 2 ⋅ 3 = 0 .
In general, replacing 6 by n , we get I ( cos ( 2 π / n ) − 1 ) I I I I = n 2 2 π 2 cos ( π / n ) = − n 2 π 2 1 − cos ( 2 π / n ) 2 cos ( π / n ) = − n 2 π 2 1 − cos 2 ( π / n ) cos ( π / n ) = − n 2 π 2 sin 2 ( π / n ) cos ( π / n ) = − n 2 π 2 cot ( π / n ) csc ( π / n ) as in the other solution.
Problem Loading...
Note Loading...
Set Loading...
Consider this following integral I ( β ) = ∫ 0 ∞ 1 + x 6 x β d x Take x 6 = t the integral becomes 6 1 ∫ 0 ∞ ( 1 + t ) 6 β + 1 + 6 5 − β t 6 β + 1 − 1 d t = 6 1 B ( 6 β + 1 , 6 5 − β ) Γ ( a ) Γ ( 1 − a ) = π cosec ( π a ) = 6 1 Γ ( 1 ) Γ ( 6 β + 1 ) Γ ( 6 5 − β ) = 6 π cosec ( 6 β + 1 π ) Now ∂ β ∂ I ( β ) = I ′ ( β ) = − 3 6 π 2 cosec ( 6 β + 1 π ) cot ( 6 β + 1 π ) = ∫ 0 ∞ 1 + x 6 x β lo g ( x ) d x Now β = 0 and answer will be 6 3 − π 2 = ∫ 0 ∞ 1 + x 6 lo g ( x ) d x Answer is a − 2 b = 0
I've found that for general ∫ 0 ∞ 1 + x n lo g ( x ) d x = − n 2 π 2 cosec ( n π ) cot ( n π )
Relevant wiki
- Beta function
- Gamma function