23rd January

Calculus Level 5

0 ln ( x ) 1 + x 6 d x = π 2 a b \int_0^∞\frac{\ln(x)}{1+x^{6}}dx=-\frac{π^2}{a\sqrt{b}}

The equation above holds true for positive integers a a and b b , where b b is square-free. Find a 2 b a-2b .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Dwaipayan Shikari
Jan 23, 2021

Consider this following integral I ( β ) = 0 x β 1 + x 6 d x \color{#E81990}I(\beta)= \int_0^∞ \frac{x^{\beta}}{1+x^6}dx Take x 6 = t x^6= t the integral becomes 1 6 0 t β + 1 6 1 ( 1 + t ) β + 1 6 + 5 β 6 d t = 1 6 B ( β + 1 6 , 5 β 6 ) \frac{1}{6} \int_0^∞\frac{t^{\frac{\beta+1}{6}-1}}{(1+t)^{\frac{\beta+1}{6}+\frac{5-\beta}{6}}}dt=\frac{1}{6}\Beta{(\frac{\beta+1}{6},\frac{5-\beta}{6})} Γ ( a ) Γ ( 1 a ) = π cosec ( π a ) \color{#E81990}\Gamma{(a)}\Gamma{(1-a)}=π\cosec(πa) = 1 6 Γ ( β + 1 6 ) Γ ( 5 β 6 ) Γ ( 1 ) = π 6 cosec ( β + 1 6 π ) = \frac{1}{6} \frac{\Gamma{(\frac{\beta+1}{6})}\Gamma{(\frac{5-\beta}{6})}}{\Gamma{(1)}}= \frac{π}{6} \cosec( \frac{\beta+1}{6}π) Now I ( β ) β = I ( β ) = π 2 36 cosec ( β + 1 6 π ) cot ( β + 1 6 π ) = 0 x β log ( x ) 1 + x 6 d x \frac{\partial{I(\beta)}}{\partial\beta}=I'(\beta)= -\frac{π^2}{36}\cosec(\frac{\beta+1}{6}π)\cot(\frac{\beta+1}{6}π)= \int_0^∞ \frac{x^{\beta}\log(x)}{1+x^6}dx Now β = 0 \beta=0 and answer will be π 2 6 3 = 0 log ( x ) 1 + x 6 d x \boxed{\frac{-π^2}{6\sqrt{3}}= \int_0^∞ \frac{\log(x)}{1+x^6}dx} Answer is a 2 b = 0 \color{#20A900}\boxed{a-2b=0}

I've found that for general 0 log ( x ) 1 + x n d x = π 2 n 2 cosec ( π n ) cot ( π n ) \int_0^∞ \frac{\log(x)}{1+x^n}dx= -\frac{π^2}{n^2}\cosec(\frac{π}{n})\cot(\frac{π}{n})

Relevant wiki

- Beta function

- Gamma function

Patrick Corn
Jan 25, 2021

Let ω = e π i / 6 . \omega = e^{\pi i / 6}. Let I I be the integral we want. Then take the pie-piece contour C C from r r to R , R, then R R to R ω 2 R\omega^2 in a circular arc, then R ω 2 R\omega^2 to r ω 2 , r\omega^2, then r ω 2 r\omega^2 to r r in a circular arc. As R , R\to\infty, the integral over the outer arc goes to 0 , 0, and as r 0 , r\to 0, the integral over the inner arc goes to 0 0 (it's approximated by a constant times r ln ( r ) , r \ln(r), which does go to 0 0 by L'Hopital). The integral over C C equals 2 π i 2\pi i times the residue at the one pole inside, namely z = ω . z=\omega. Putting this all together gives 0 ln ( x ) 1 + x 6 d x 0 ln ( x ) + i π / 3 1 + x 6 ω 2 d x = 2 π i R e s z = ω ln ( z ) 1 + z 6 I ( 1 ω 2 ) 0 i π / 3 1 + x 6 ω 2 d x = 2 π i π i / 6 6 ω 5 I ( ω 10 1 ) 0 i π / 3 1 + x 6 d x = π 2 ω 5 18 \begin{aligned} \int_0^\infty \frac{\ln(x)}{1+x^6} \, dx - \int_0^\infty \frac{\ln(x) + i \pi/3}{1+x^6} \omega^2 \, dx &= 2\pi i \, {\rm Res}_{z=\omega} \frac{\ln(z)}{1+z^6} \\ I(1-\omega^2) - \int_0^\infty \frac{i \pi/3}{1+x^6} \omega^2 \, dx &= 2\pi i \frac{\pi i/6}{6\omega^5} \\ I(\omega^{10} - 1) - \int_0^\infty \frac{i \pi/3}{1+x^6} \, dx &= -\frac{\pi^2 \omega^5}{18} \\ \end{aligned} and now we can take real parts, to get I / 2 = π 2 ( 3 / 2 ) 18 I = π 2 3 18 I = π 2 6 3 , \begin{aligned} -I/2 &= -\frac{\pi^2 (-\sqrt{3}/2)}{18} \\ I &= -\frac{\pi^2 \sqrt{3}}{18} \\ I & = -\frac{\pi^2}{6\sqrt{3}}, \end{aligned} so the answer is 6 2 3 = 0 . 6-2\cdot 3 = \fbox{0}.

In general, replacing 6 6 by n , n, we get I ( cos ( 2 π / n ) 1 ) = 2 π 2 n 2 cos ( π / n ) I = π 2 n 2 2 cos ( π / n ) 1 cos ( 2 π / n ) I = π 2 n 2 cos ( π / n ) 1 cos 2 ( π / n ) I = π 2 n 2 cos ( π / n ) sin 2 ( π / n ) I = π 2 n 2 cot ( π / n ) csc ( π / n ) \begin{aligned} I(\cos(2 \pi/n) - 1) &= \frac{2\pi^2}{n^2} \cos(\pi/n) \\ I &= -\frac{\pi^2}{n^2} \frac{2\cos(\pi/n)}{1-\cos(2\pi/n)} \\ I &= -\frac{\pi^2}{n^2} \frac{\cos(\pi/n)}{1-\cos^2(\pi/n)} \\ I &= -\frac{\pi^2}{n^2} \frac{\cos(\pi/n)}{\sin^2(\pi/n)} \\ I &= -\frac{\pi^2}{n^2} \cot(\pi/n) \csc(\pi/n) \end{aligned} as in the other solution.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...