#24 Measure Your Calibre

Calculus Level 4

x d y d x = y + x tan ( y x ) \large{x\dfrac{dy}{dx} = y+ x \tan \left(\frac{y}{x}\right)}

Given the above and that when x = 1 x=1 , y = 9 0 y= 90^\circ , and x = 1 2 x=\frac{1}{2} , y = a y= a , where 0 a 9 0 0^\circ \le a \le 90^\circ . Find a a in degrees.


For other problems: Check your Calibre


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 18, 2017

x d y d x = y + x tan y x Dividing both sides by x d y d x = y x + tan y x Let u = y x , y = u x , u + x d u d x = u + tan u d y d x = u + x d u d x x d u d x = tan u d u tan u = d x x cos u d u sin u = d x x d sin u sin u = ln x + C ln ( sin u ) = ln x + ln c sin y x = c x Putting x = 1 sin 9 0 = c c = 1 sin y x = x Putting x = 1 2 sin 2 y = 1 2 2 y = 3 0 y = 1 5 \begin{aligned} x\frac {dy}{dx} & = y + x \tan \frac yx & \small \color{#3D99F6} \text{Dividing both sides by }x \\ \frac {dy}{dx} & = \frac yx + \tan \frac yx & \small \color{#3D99F6} \text{Let }u = \frac yx, \ y = ux, \\ u + x \frac {du}{dx} & = u + \tan u & \small \color{#3D99F6} \frac {dy}{dx} = u + x \frac {du}{dx} \\ x \frac {du}{dx} & = \tan u \\ \frac {du}{\tan u} & = \frac {dx}x \\ \int \frac {\cos u \ du}{\sin u} & = \int \frac {dx}x \\ \int \frac {d \sin u}{\sin u} & = \ln x + C \\ \ln (\sin u) & = \ln x + \ln c \\ \implies \sin \frac yx & = cx & \small \color{#3D99F6} \text{Putting }x=1 \\ \sin 90^\circ & = c \\ \implies c & = 1 \\ \implies \sin \frac yx & = x & \small \color{#3D99F6} \text{Putting }x=\frac 12 \\ \sin 2y & = \frac 12 \\ \implies 2y & = 30^\circ \\ y & = \boxed{15^\circ} \end{aligned}

How do you make out so complex Latex?

Md Zuhair - 4 years, 2 months ago

Log in to reply

I understand LaTex very well and I am very particular on presentation.

Chew-Seong Cheong - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...