240 Followers Problem - 1

Geometry Level 3

cos θ 1 + cos θ 2 + cos θ 3 \large \cos \theta _{1} + \cos \theta _{2} + \cos \theta_{3}

Given that cos ( θ 1 θ 2 ) + cos ( θ 2 θ 3 ) + cos ( θ 3 θ 1 ) = 3 2 \cos \left( \theta_{1} -\theta_{2} \right) + \cos \left( \theta_{2} -\theta_{3} \right) + \cos \left( \theta_{3} -\theta_{1} \right) = -\dfrac{3}{2} , find the value of the expression above.


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

P = [ cos θ 1 cos θ 2 + sin θ 1 sin θ 2 ] + [ cos θ 2 cos θ 3 + sin θ 2 sin θ 3 ] + [ cos θ 3 cos θ 1 + sin θ 3 sin θ 1 ] P=[\cos{\theta_1}\cos{\theta_2}+\sin{\theta_1}\sin{\theta_2}]+[\cos{\theta_2}\cos{\theta_3}+\sin{\theta_2}\sin{\theta_3}]+[\cos{\theta_3}\cos{\theta_1}+\sin{\theta_3}\sin{\theta_1}] P = [ cos θ 1 cos θ 2 + cos θ 2 cos θ 3 + cos θ 3 cos θ 1 ] + [ sin θ 1 sin θ 2 + sin θ 2 sin θ 3 + sin θ 3 sin θ 1 ] P=\displaystyle[\cos{\theta_1}\cos{\theta_2}+\cos{\theta_2}\cos{\theta_3}+\cos{\theta_3}\cos{\theta_1}]+[\sin{\theta_1}\sin{\theta_2}+\sin{\theta_2}\sin{\theta_3}+\sin{\theta_3}\sin{\theta_1}] P = ( cos θ 1 + cos θ 2 + cos θ 3 ) 2 cos 2 θ 1 cos 2 θ 2 cos 2 θ 3 2 + ( sin θ 1 + sin θ 2 + sin θ 3 ) 2 sin 2 θ 1 sin 2 θ 2 sin 2 θ 3 2 P=\displaystyle\frac{(\cos \theta _{1} + \cos \theta _{2} + \cos \theta_{3})^2-\cos^2 \theta _{1} - \cos^2 \theta _{2} - \cos^2 \theta_{3}}{2}+\frac{(\sin \theta _{1} + \sin \theta _{2} + \sin \theta_{3})^2-\sin^2 \theta _{1} - \sin^2 \theta _{2} - \sin^2 \theta_{3}}{2} P = ( cos θ 1 + cos θ 2 + cos θ 3 ) 2 + ( sin θ 1 + sin θ 2 + sin θ 3 ) 2 3 2 = 3 2 P=\displaystyle\frac{(\cos \theta _{1} + \cos \theta _{2} + \cos \theta_{3})^2+(\sin \theta _{1} + \sin \theta _{2} + \sin \theta_{3})^2-3}{2}=-\frac{3}{2}

( cos θ 1 + cos θ 2 + cos θ 3 ) 2 + ( sin θ 1 + sin θ 2 + sin θ 3 ) 2 = 0 (\cos \theta _{1} + \cos \theta _{2} + \cos \theta_{3})^2+(\sin \theta _{1} + \sin \theta _{2} + \sin \theta_{3})^2=0

cos θ 1 + cos θ 2 + cos θ 3 = 0 \cos \theta _{1} + \cos \theta _{2} + \cos \theta_{3}=0

Nice solution. You can even do it another way.

Surya Prakash - 5 years, 7 months ago

Log in to reply

@Surya Prakash I think it isn't good to repeat essentially the same problem, your 3rd problem is a repeat for this.

Venkata Karthik Bandaru - 5 years, 7 months ago

Let a , b , c a,b,c be three complex numbers such that a = e θ 1 i a=e^{\theta_1 i} , b = e θ 2 i b=e^{\theta_2 i} and c = e θ 3 i c=e^{\theta_3 i} . Then let's find the magnitude of their sum, i.e., a + b + c |a+b+c| :

a + b + c = cos θ 1 + cos θ 2 + cos θ 3 + i ( sin θ 1 + sin θ 2 + sin θ 3 ) a + b + c = ( cos θ 1 + cos θ 2 + cos θ 3 ) 2 + ( sin θ 1 + sin θ 2 + sin θ 3 ) 2 a + b + c = 3 + 2 ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 + cos θ 2 cos θ 3 + sin θ 2 sin θ 3 + cos θ 3 cos θ 1 + sin θ 3 sin θ 1 ) a + b + c = 3 + 2 ( cos ( θ 1 θ 2 ) + cos ( θ 2 θ 3 ) + cos ( θ 3 θ 1 ) ) a + b + c = 3 + 2 ( 3 2 ) a + b + c = 0 a + b + c = 0 |a+b+c|=|\cos \theta_1+\cos \theta_2+\cos \theta_3+i(\sin \theta_1+\sin \theta_2+\sin \theta_3) \\ |a+b+c|=\sqrt{(\cos \theta_1+\cos \theta_2+\cos \theta_3)^2+(\sin \theta_1+\sin \theta_2+\sin \theta_3)^2} \\ |a+b+c|=\sqrt{3+2(\cos \theta_1 \cos \theta_2+\sin \theta_1 \sin \theta_2+\cos \theta_2 \cos \theta_3+\sin \theta_2 \sin \theta_3+\cos \theta_3 \cos \theta_1+\sin \theta_3 \sin \theta_1)} \\ |a+b+c|=\sqrt{3+2(\cos(\theta_1-\theta_2)+\cos(\theta_2-\theta_3)+\cos(\theta_3-\theta_1))} \\ |a+b+c|=\sqrt{3+2\left(-\dfrac{3}{2}\right)} \\ |a+b+c|=0 \implies a+b+c=0

Hence, cos θ 1 + cos θ 2 + cos θ 3 + i ( sin θ 1 + sin θ 2 + sin θ 3 ) = 0 \cos \theta_1+\cos \theta_2+\cos \theta_3+i(\sin \theta_1+\sin \theta_2+\sin \theta_3)=0 . Comparing the real part we get 0 \boxed{0} as our answer.

Nice solution!

Miloje Đukanović - 5 years, 7 months ago

cos ( θ 1 θ 2 ) + cos ( θ 2 θ 3 ) + cos ( θ 3 θ 1 ) = 3 2 \small \cos(\theta_{1}-\theta_{2})+\cos(\theta_{2} -\theta_{3})+\cos(\theta_{3} -\theta_{1})=-\dfrac{3}{2}

3 + 2 [ cos ( θ 1 θ 2 ) + cos ( θ 2 θ 3 ) + cos ( θ 3 θ 1 ) ] = 0 \small \implies 3+2[\cos(\theta_{1}-\theta_{2})+\cos(\theta_{2}-\theta_{3})+\cos(\theta_{3}-\theta_{1})]=0

( sin 2 ( θ 1 ) + cos 2 ( θ 1 ) ) + ( sin 2 ( θ 2 ) + cos 2 ( θ 2 ) ) + ( sin 2 ( θ 3 ) + cos 2 ( θ 3 ) ) + 2 cos ( θ 1 ) cos ( θ 2 ) + 2 sin ( θ 1 ) sin ( θ 2 ) + 2 cos ( θ 2 ) cos ( θ 3 ) + 2 sin ( θ 2 ) sin ( θ 3 ) + 2 cos ( θ 3 ) cos ( θ 1 ) + 2 sin ( θ 3 ) sin ( θ 1 ) = 0 \small \implies (\sin^{2}(\theta_{1})+\cos^{2}(\theta_{1}))+(\sin^{2}(\theta_{2})+\cos^{2}(\theta_{2}))+(\sin^{2}(\theta_{3})+\cos^{2}(\theta_{3}))+2\cos(\theta_{1})\cos(\theta_{2})+2\sin(\theta_{1})\sin(\theta_{2})+2\cos(\theta_{2})\cos(\theta_{3})+2\sin(\theta_{2})\sin(\theta_{3})+2\cos(\theta_{3})\cos(\theta_{1})+2\sin(\theta_{3})\sin(\theta_{1})=0

( sin 2 ( θ 1 ) + sin 2 ( θ 2 ) + sin 2 ( θ 3 ) + 2 sin ( θ 1 ) sin ( θ 2 ) + 2 sin ( θ 2 ) sin ( θ 3 ) + 2 sin ( θ 3 ) sin ( θ 1 ) ) + ( cos 2 ( θ 1 ) + cos 2 ( θ 2 ) + cos 2 ( θ 3 ) + 2 cos ( θ 1 ) cos ( θ 2 ) + 2 cos ( θ 2 ) cos ( θ 3 ) + 2 cos ( θ 3 ) cos ( θ 1 ) ) = 0 \small \implies (\sin^{2}(\theta_{1})+\sin^{2}(\theta_{2})+\sin^{2}(\theta_{3})+2\sin(\theta_{1})\sin(\theta_{2})+2\sin(\theta_{2})\sin(\theta_{3})+2\sin(\theta_{3})\sin(\theta_{1}))+(\cos^{2}(\theta_{1})+\cos^{2}(\theta_{2})+\cos^{2}(\theta_{3})+2\cos(\theta_{1})\cos(\theta_{2})+2\cos(\theta_{2})\cos(\theta_{3})+2\cos(\theta_{3})\cos(\theta_{1}))=0

( sin ( θ 1 ) + sin ( θ 2 ) + sin ( θ 3 ) ) 2 + ( cos ( θ 1 ) + cos ( θ 2 ) + cos ( θ 3 ) ) 2 = 0 \small \implies (\sin(\theta_{1})+\sin(\theta_{2})+\sin(\theta_{3}))^{2}+(\cos(\theta_{1})+\cos(\theta_{2})+\cos(\theta_{3}))^{2}=0

cos ( θ 1 ) + cos ( θ 2 ) + cos ( θ 3 ) = sin ( θ 1 ) + sin ( θ 2 ) + sin ( θ 3 ) = 0 \small \implies \cos(\theta_{1})+\cos(\theta_{2})+\cos(\theta_{3})=\sin(\theta_{1})+\sin(\theta_{2})+\sin(\theta_{3})=\boxed{0}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...