240 Followers Problem - 4

Geometry Level 4

sin 2 θ 1 + sin 2 θ 2 + sin 2 θ 3 \large \sin^2 \theta_{1} + \sin^2 \theta_{2} +\sin^2 \theta_{3}

Given that cos ( θ 1 θ 2 ) + cos ( θ 2 θ 3 ) + cos ( θ 3 θ 1 ) = 3 2 \cos \left( \theta_{1} -\theta_{2} \right) + \cos \left( \theta_{2} -\theta_{3} \right) + \cos \left( \theta_{3} -\theta_{1} \right) = -\dfrac{3}{2} , find the value of the expression above.


The answer is 1.500000000000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

T h e s u m g i v e n = 1 1 2 , C o s θ i s n e v e r g r e a t e r t h a n 1 , t h e s u m i s n e g a t i v e , w e a l s o k n o w C o s ( 60 , 120 240 , O R 300 ) = 1 2 . 1 1 2 = 1 2 1 2 1 2 , O R 0 , 1 2 , 1 O R 1 , 1 , + 1 2 . L e t u s t r y t h e 1 s t . Hence differences must be -120 and -240. Let us take one angle as 60. The other two must be 60 ± 120 , o r 60 ± 240. θ 1 = 6 0 o , θ 2 = 18 0 o , θ 3 = 30 0 o , ! ! ! ! I t w o r k s ! S i n 2 60 + S i n 2 180 + S i n 2 300 = 1 1 2 The ~ sum ~ given~ = - 1\frac 1 2,~~ |Cos\theta|~is~ never~ greater~ than~ 1,~~ the~ sum~~ is~~ negative,\\ we~also~ know~~ |Cos(60, ~120~240,OR~~300)|=\dfrac 1 2.\\ \therefore~ - 1\frac 1 2=- \frac 1 2 - \frac 1 2 - \frac 1 2, ~~~OR~~~ 0, - \frac 1 2, - 1 ~~~OR~~~-1,~-1, +\frac 1 2.\\ Let~us~try~the~1^{st}.\text{ Hence differences must be -120 and -240.}\\ \text{Let us take one angle as 60. The other two must be } 60\pm 120,~~~ or~~~60\pm 240. \\ \therefore~\theta_1=60^o, ~~\theta_2=180^o, ~~\theta_3=300^o,\\ !!!! ~It~works!\\ Sin^2 60+Sin^2 180+Sin^2 300=\Large ~~~~\color{#D61F06}{ 1\frac 1 2}

I am coming up with more explanation shortly.

Any Valid Method?

Manan Agrawal - 3 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...