sin 2 θ 1 + sin 2 θ 2 + sin 2 θ 3
Given that cos ( θ 1 − θ 2 ) + cos ( θ 2 − θ 3 ) + cos ( θ 3 − θ 1 ) = − 2 3 , find the value of the expression above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
T h e s u m g i v e n = − 1 2 1 , ∣ C o s θ ∣ i s n e v e r g r e a t e r t h a n 1 , t h e s u m i s n e g a t i v e , w e a l s o k n o w ∣ C o s ( 6 0 , 1 2 0 2 4 0 , O R 3 0 0 ) ∣ = 2 1 . ∴ − 1 2 1 = − 2 1 − 2 1 − 2 1 , O R 0 , − 2 1 , − 1 O R − 1 , − 1 , + 2 1 . L e t u s t r y t h e 1 s t . Hence differences must be -120 and -240. Let us take one angle as 60. The other two must be 6 0 ± 1 2 0 , o r 6 0 ± 2 4 0 . ∴ θ 1 = 6 0 o , θ 2 = 1 8 0 o , θ 3 = 3 0 0 o , ! ! ! ! I t w o r k s ! S i n 2 6 0 + S i n 2 1 8 0 + S i n 2 3 0 0 = 1 2 1
I am coming up with more explanation shortly.