250 Followers Problem

Algebra Level 5

log 5 [ ( 5 5 + 5 ) ( 5 5 + 5 ) 2 ( 5 5 + 5 ) 3 ( 6 + 2 5 ) 215 18 215 18 215 18 3 3 3 3 ] = ? \log_{\sqrt{5}}{\left[\dfrac{\sqrt{(5\sqrt{5}+5)\sqrt{(5\sqrt{5}+5)^{2}\sqrt{(5\sqrt{5}+5)^{3}\sqrt{\ldots}}}}}{(6+2\sqrt{5})\sqrt[3]{215-18\sqrt[3]{215-18\sqrt[3]{215-18\sqrt[3]{\ldots}}}}}\right]}=?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rohit Udaiwal
Mar 27, 2016

We will try to solve this problem in parts to make the simplification easy to understand.

Let's work out the numerator first, using method to evaluate an arithmetic-geometric progression as follows: ( 5 5 + 5 ) ( 5 5 + 5 ) 2 ( 5 5 + 5 ) 3 = ( 5 5 + 5 ) 1 2 + 2 4 + 3 8 + = [ 5 ( 5 + 1 ) ] 2 \begin{aligned} \sqrt{(5\sqrt{5}+5)\sqrt{(5\sqrt{5}+5)^{2}\sqrt{(5\sqrt{5}+5)^{3}\sqrt{\ldots}}}} = & (5\sqrt{5}+5)^{\dfrac{1}{2}+\dfrac{2}{4}+\dfrac{3}{8}+\ldots} \\ = & [5(\sqrt{5}+1)]^2 \end{aligned}

Note :Let's see why 1 2 + 2 4 + 3 8 + = 2 \dfrac{1}{2}+\dfrac{2}{4}+\dfrac{3}{8}+\ldots=2 . S = 1 2 + 2 4 + 3 8 + ( 1 ) 2 S = 1 1 + 2 2 + 3 4 + ( 2 ) S = 1 + 1 2 + 1 4 + 1 8 + [ Subtracting ( 1 ) from ( 2 ) ] \begin{aligned} \mathbf{S} = & \dfrac{1}{2}+\dfrac{2}{4}+\dfrac{3}{8}+\ldots \quad \quad \quad \ldots (1) \\ \implies 2\mathbf{S} = & \dfrac{1}{1}+\dfrac{2}{2}+\dfrac{3}{4}+\ldots \quad \quad \quad \ldots (2) \\ \therefore \mathbf{S}= & 1+ \dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\ldots \quad \quad \quad [\text{Subtracting} ~ (1) ~ \text{from} ~ (2)] \end{aligned} Now this a geometric progression ,with a = 1 a=1 and r = 1 2 r=\dfrac{1}{2} ,and thus evaluates to 1 1 1 2 = 2 . \dfrac{1}{1-\frac{1}{2}}=2~ .


Next,note that 6 + 2 5 = ( 5 + 1 ) 2 6+2\sqrt5=(\sqrt5+1)^2


As a last step,recall the identity ( a b ) 3 = a 3 b 3 3 a b ( a b ) ( a b ) = a 3 b 3 3 a b ( a b ) 3 = a 3 b 3 3 a b a 3 b 3 3 a b ( a b ) 3 3 = a 3 b 3 3 a b a 3 b 3 3 a b a 3 b 3 3 a b ( a b ) 3 3 3 = \begin{aligned} \color{#3D99F6}{(a-b)}^3= & a^3-b^3-3ab\color{#3D99F6}{(a-b)} \\ \therefore \color{#3D99F6}{(a-b)}= & \sqrt[3]{a^3-b^3-3ab\color{#3D99F6}{(a-b)}} \\ = & \sqrt[3]{a^3-b^3-3ab\sqrt[3]{a^3-b^3-3ab\color{#3D99F6}{(a-b)}}} \\ = & \sqrt[3]{a^3-b^3-3ab\sqrt[3]{a^3-b^3-3ab\sqrt[3]{a^3-b^3-3ab\color{#3D99F6}{(a-b)}}}} \\ = & \ldots \end{aligned} Replacing a a with 6 6 and b b with 1 1 ,we get 6 1 = 6 3 1 3 6 6 3 1 3 6 6 3 1 3 6 3 3 3 3 5 = 215 18 215 18 215 18 3 3 3 3 \begin{aligned} 6-1= & \sqrt[3]{6^3-1-3\cdot6\sqrt[3]{6^3-1-3\cdot6\sqrt[3]{6^3-1-3\cdot6\sqrt[3]{\ldots}}}} \\ 5 =& \sqrt[3]{215-18\sqrt[3]{215-18\sqrt[3]{215-18\sqrt[3]{\ldots}}}}\end{aligned}


log 5 [ ( 5 5 + 5 ) ( 5 5 + 5 ) 2 ( 5 5 + 5 ) 3 ( 6 + 2 5 ) 215 18 215 18 215 18 3 3 3 3 ] = log 5 [ 25 ( 5 + 1 ) 2 ( 5 + 1 ) 2 5 ] = log 5 5 = 2 \therefore \log_{\sqrt{5}}{\left[\dfrac{\sqrt{(5\sqrt{5}+5)\sqrt{(5\sqrt{5}+5)^{2}\sqrt{(5\sqrt{5}+5)^{3}\sqrt{\ldots}}}}}{(6+2\sqrt{5})\sqrt[3]{215-18\sqrt[3]{215-18\sqrt[3]{215-18\sqrt[3]{\ldots}}}}}\right]} \\ =\log_{\sqrt5}{\left[\dfrac{25(\sqrt5+1)^2}{(\sqrt5+1)^2\cdot5}\right]}=\log_{\sqrt5}{5}=\boxed{\boxed{2}}

Nice....... (+1).... :-)

Rishabh Jain - 5 years, 2 months ago

Log in to reply

Thanks ...:)

Rohit Udaiwal - 5 years, 2 months ago

Nice problem as well as solution!

Did the same except in the last step i observed

x = (215-18x)^1/3

Prakhar Bindal - 5 years, 2 months ago

Log in to reply

Yes,that is also a way.I thought about including that as well in the solution but seeing its length, I decided not to mention it.BTW THANKS ! \color{#20A900}{\text{THANKS !}}

Rohit Udaiwal - 5 years, 2 months ago
Sal Gard
Mar 28, 2016

Solving for each part, the top part of the fraction is (5sqrt(5)+5)^(1/2+2/4+3/8+....) Let's solve this. Let S equal this sum. Then 2S=1+1+3/4+4/8... Subtracting these, our sum is equivalent to 1+1/2+1/4... Using the formula a/(1-r) for infinite geometric series, 1/(1-1/2)=2, so the top part is 25(6+2sqrt(5)). Next for the bottom. Letting x be the sum, x=cbrt(215-18x). Cubing both sides, we get x^3+18x-215=0. Using the rational root theorem with factors of 215, we get 5 to be a solution. Therefore x=5. Overall we get log(25/5)/log(sqrt(5)), after the 6+2sqrt(5) cancel out and with log base b of a equaling log a/log b. Since log(sqrt(5))=log(5^1/2) and log a^b=b log a, our final answer is 1/(1/2)=2.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...