An Interesting Sequence

Algebra Level 2

Find the sequence of ( 2 55 ) , ( 3 44 ) , ( 4 33 ) \Large \text{Find the sequence of }\left(2^\color{#D61F06}{55}\right), \left(3^\color{#3D99F6}{44}\right), \left(4^\color{#CEBB00}{33}\right)

4 33 > 2 55 > 3 44 4^{33}>2^{55}>3^{44} 2 55 > 4 33 > 3 44 2^{55}>4^{33}>3^{44} 4 33 > 3 44 > 2 55 4^{33}>3^{44}>2^{55} 3 44 > 2 55 > 4 33 3^{44}>2^{55}>4^{33} They are equal. 2 55 > 3 44 > 4 33 2^{55}>3^{44}>4^{33} 3 44 > 4 33 > 2 55 3^{44}>4^{33}>2^{55}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Edward Christian
Aug 25, 2019

( 2 55 ) = [ ( 2 5 ) 11 ] = ( 32 11 ) \LARGE \left(2^\color{#D61F06}{55}\right) =\left[\LARGE \left(2^\color{#D61F06}5\right)^\color{#D61F06}{11}\right]= \left(\LARGE \color{#EC7300}{32}^\color{#D61F06}{11}\right) ( 3 44 ) = [ ( 3 4 ) 11 ] = ( 81 11 ) \LARGE \left(3^\color{#3D99F6}{44}\right) =\left[\LARGE \left(3^\color{#3D99F6}4\right)^\color{#3D99F6}{11}\right]= \left(\LARGE \color{#EC7300}{81}^\color{#3D99F6}{11}\right) ( 4 33 ) = [ ( 4 3 ) 11 ] = ( 64 11 ) \LARGE \left(4^\color{#CEBB00}{33}\right) =\left[\LARGE \left(4^\color{#CEBB00}^3\right)^\color{#CEBB00}{11}\right]= \left(\LARGE \color{#EC7300}{64}^\color{#CEBB00}{11}\right) ( 3 44 ) > ( 4 33 ) > ( 2 55 ) \therefore \LARGE \left(3^\color{#3D99F6}{44}\right)>\LARGE \left(4^\color{#CEBB00}{33}\right)>\LARGE \left(2^\color{#D61F06}{55}\right)

good problem and solution!

Brian Blass - 1 year, 5 months ago

very easy solution

Razing Thunder - 9 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...