#29 Measure you Calibre

Calculus Level 4

Let x 1 x_1 and x 2 x_2 denote the minimum value and the maximum value of x x , respectively, satisfying x 1 2 |x-1| \leq 2 .

If the area bounded between the curve x 2 y 2 = 1 x^2 - y^2 = 1 , x = x 1 x = x_1 and x = x 2 x=x_2 is of the form

A B ln C + D E , \large {A \sqrt {B} - \ln|C+ D \sqrt {E}|}, where A , B , C , D , E A,B,C,D,E are all positive integers with B , E B,E square-free. Find A + B + C + D + E A+B+C+D+E .


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Guilherme Niedu
Apr 11, 2017

x 1 3 1 x 3 \large \displaystyle |x-1| \leq 3 \rightarrow \color{#20A900} \boxed{\large \displaystyle -1 \leq x \leq 3}

x 2 y 2 = 1 y = ± x 2 1 \large \displaystyle x^2 - y^2 = 1 \rightarrow \color{#20A900} \boxed{\large \displaystyle y = \pm \sqrt{x^2 - 1} }

Which is a symmetrical curve with respect to the x-axis. So, the area we're looking for is:

A = 2 1 3 x 2 1 d x \large \displaystyle A = 2 \int_1^3 \sqrt{x^2-1} dx

x = cosh ( u ) d x = sinh ( u ) d u \large \displaystyle \color{#20A900} x = \cosh(u) \rightarrow dx = \sinh(u) du

A = 2 0 a c o s h ( 3 ) cosh ( u ) 2 1 sinh ( u ) d u \large \displaystyle A = 2 \int_0^{acosh(3)} \sqrt{\cosh(u)^2-1} \sinh(u) du

A = 2 0 a c o s h ( 3 ) sinh 2 ( u ) d u \large \displaystyle A = 2 \int_0^{acosh(3)} \sinh^2(u) du

A = 2 0 a c o s h ( 3 ) cosh ( 2 u ) 1 2 d u \large \displaystyle A = 2 \int_0^{acosh(3)} \frac{ \cosh(2u) - 1}{2} du

A = s i n h ( 2 u ) 2 0 a c o s h ( 3 ) a c o s h ( 3 ) \color{#20A900} \boxed{ \large \displaystyle A = \frac{sinh(2u)}{2} \Bigg |_0^{acosh(3)} - acosh(3) }

Now, to calculate a c o s h ( 3 ) acosh(3) :

u = a c o s h ( 3 ) e u + e u 2 = 3 \large \displaystyle u = acosh(3) \rightarrow \frac{e^u + e^{-u}}{2} = 3

Set e u = v \large \displaystyle e^u = v

v + 1 v = 6 v 2 6 v + 1 = 0 v = 3 + 2 2 a c o s h ( 3 ) = ln ( 3 + 2 2 ) \large \displaystyle v + \frac1v = 6 \rightarrow v^2 - 6v + 1 = 0 \rightarrow v = 3 + 2\sqrt{2} \rightarrow \color{#20A900} \boxed{ \large \displaystyle acosh(3) = \ln(|3 + 2\sqrt{2}|) }

Also, if e u = v \large \displaystyle e^u = v , s i n h ( 2 u ) = v 2 1 v 2 s i n h ( 2 u ) = 12 2 \large \displaystyle sinh(2u) = v^2 - \frac{1}{v^2} \rightarrow \color{#20A900} \boxed{ \large \displaystyle sinh(2u) = 12\sqrt{2}}

So:

A = 6 2 + ln ( 3 + 2 2 ) \color{#20A900} \boxed{ \large \displaystyle A = 6\sqrt{2} + \ln(|3 + 2\sqrt{2}|) }

Then:

a = 6 , b = 2 , c = 3 , d = 2 , e = 2 , a + b + c + d + e = 15 \large \displaystyle \color{#3D99F6} a = 6, b = 2, c = 3, d = 2, e = 2, \boxed{\large \displaystyle a+b+c+d+e = 15}

Chew-Seong Cheong
Apr 14, 2017

We note that the minimum and maximum values of x 1 2 |x-1|\le 2 occur at x 1 = 1 x_1=1 and x 2 = 3 x_2=3 respectively. The area required is given by the integral below:

I = 2 1 3 x 2 1 d x Let x = sec u , d x = sec u tan u d u = 2 0 α sec u tan 2 u d u where α = sec 1 3 = 2 0 α sec u ( sec 2 u 1 ) d u = 2 0 α sec 3 u d u 2 0 α sec u d u Using reduction formula (see footnotes) = 2 ( sin u sec 2 u 2 0 α + 1 2 0 α sec u d u ) 2 0 α sec u d u = 6 2 0 α sec u d u = 6 2 0 α sec u tan u + sec 2 u tan u + sec u d u = 6 2 ln ( sec u + tan u ) 0 α = 6 2 ln ( 3 + 2 2 ) \begin{aligned} I & = 2 \int_1^3 \sqrt{x^2-1} \ dx & \small \color{#3D99F6} \text{Let }x = \sec u, \ dx = \sec u \tan u \ du \\ & = 2 \int_0^\alpha \sec u \tan^2 u \ du & \small \color{#3D99F6} \text{where } \alpha = \sec^{-1} 3 \\ & = 2 \int_0^\alpha \sec u \left(\sec^2 u - 1\right) du \\ & = 2 {\color{#3D99F6} \int_0^\alpha \sec^3 u \ du} - 2 \int_0^\alpha \sec u \ du & \small \color{#3D99F6} \text{Using reduction formula (see footnotes)} \\ & = 2 {\color{#3D99F6} \left( \frac {\sin u \sec^2u}2 \bigg|_0^\alpha +\frac 12 \int_0^\alpha \sec u \ du \right)} - 2 \int_0^\alpha \sec u \ du \\ & = 6\sqrt 2 - \int_0^\alpha \sec u \ du \\ & = 6\sqrt 2 - \int_0^\alpha \frac {\sec u \tan u + \sec^2 u}{\tan u + \sec u} du \\ & = 6\sqrt 2 - \ln (\sec u + \tan u) \bigg|_0^\alpha \\ & = 6\sqrt 2 - \ln (3+2\sqrt 2) \end{aligned}

A + B + C + D + E = 6 + 2 + 3 + 2 + 2 = 15 \implies A+B+C+D+E = 6+2+3+2+2 = \boxed{15}


Reduction formula: sec m x = sin x sec m 1 x m 1 + m 2 m 1 sec m 2 x d x \small \displaystyle \int \sec^m x = \frac {\sin x \sec^{m-1}x}{m-1}+\frac {m-2}{m-1} \int \sec^{m-2} x \ dx

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...