2arcsin+2arccos

Geometry Level 2

Find the average value of 2 sin 1 n + 2 cos 1 n , 2\sin^{-1} n+2\cos^{-1} n,
in radians where n n is on the interval [ 1 , 1 ] [1,-1] .
Bonus: prove the answer using geometry unless you think it is impossible to be proved using geometry. In that case, type 0 as your answer.


The answer is 3.1415926535897932384626433832795.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jeff Giff
Jun 9, 2020

Construct an isosceles triangle A B C \triangle ABC .
In isosceles A B C \triangle ABC , B C BC is the base. Construct the median A M AM where M M is the midpoint of B C BC .

Since A B C \triangle ABC is isosceles, A M B \angle AMB is a right angle.
A M B \Rightarrow \triangle AMB is a right angled triangle.
This part uses basic definitions of sin & cos .
Call the length of the hypotenuse of R t A M B Rt\triangle AMB k k . Call the length of median A M AM l l .
B A M = cos 1 l k . \Rightarrow \angle BAM=\cos^{-1} \frac{l}{k}.
B A C = 2 B A M = 2 cos 1 l k . \Rightarrow \angle BAC=2\angle BAM=2\cos^{-1} \frac{l}{k}.
Since A M B \triangle AMB is right angled, and A B C \triangle ABC is isosceles,
sin B = sin C = l k . \sin \angle B=\sin \angle C=\frac{l}{k}.
B = C = sin 1 l k . \Rightarrow \angle B=\angle C=\sin^{-1} \frac{l}{k}.
Let l k = n . \frac{l}{k}=n. Finally, since A , B , C \angle A,\angle B,\angle C are the interior angles of a triangle, i.e. they add up to π ( r a d ) \pi (rad) , 2 cos 1 n + 2 × sin 1 n = π 2\cos^{-1} n+2 \times \sin^{-1} n=\pi in radians.

The question should read "... in radians..."

Aaghaz Mahajan - 1 year ago

Log in to reply

Oh, I have so many typos recently. Thanks a lot:)

Jeff Giff - 1 year ago
Tom Engelsman
Feb 5, 2021

Let's use the Mean Function Value Formula from calculus here.:

1 b a a b f ( x ) d x \frac{1}{b-a} \cdot \int_{a}^{b} f(x) dx

Let f ( x ) = 2 arcsin ( x ) + 2 arccos ( x ) f(x) = 2\arcsin(x) + 2\arccos(x) over the interval [ 1 , 1 ] [-1,1] . We now compute:

1 1 ( 1 ) 1 1 2 arcsin ( x ) + 2 arccos ( x ) d x ; \frac{1}{1-(-1)} \cdot \int_{-1}^{1} 2\arcsin(x) + 2\arccos(x) dx;

or 1 2 2 [ 1 x 2 + x arcsin ( x ) + x arccos ( x ) 1 x 2 ] 1 1 ; \frac{1}{2} \cdot 2[\sqrt{1-x^2} + x\arcsin(x) + x\arccos(x) - \sqrt{1-x^2}]|_{-1}^{1};

or arcsin ( 1 ) + arccos ( 1 ) + arcsin ( 1 ) + arccos ( 1 ) = π 2 + 0 π 2 + π = π . ; \arcsin(1) + \arccos(1) + \arcsin(-1) + \arccos(-1) = \frac{\pi}{2} + 0 -\frac{\pi}{2} + \pi = \boxed{\pi}.;

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...