2D-3D

Geometry Level pending

A circle is placed in x , y , z x,y,z space with centre at ( 1 , 2 , 3 ) (1,2,3) . If all three axes touch the circle's edge (but do not puncture the circle), what is the radius of the circle (correct to 3 decimal places)?


The answer is 4.844.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Miles Koumouris
Jan 4, 2017

Denote the points at which the circle touches the x , y and z axes as \textrm{Denote the points at which the circle touches the }x,\textrm{ }y\textrm{ and }z\textrm{ axes as }

( a , 0 , 0 ) , ( 0 , b , 0 ) and ( 0 , 0 , c ) respectively. (a,0,0),\textrm{ }(0,b,0)\textrm{ and }(0,0,c)\textrm{ respectively.}

If the circle has radius r , then: \textrm{If the circle has radius }r\textrm{, then:}

5 + ( c 3 ) 2 = 10 + ( b 2 ) 2 \sqrt{5+(c-3)^2}=\sqrt{10+(b-2)^2}

10 + ( b 2 ) 2 = 13 + ( a 1 ) 2 \sqrt{10+(b-2)^2}=\sqrt{13+(a-1)^2}

13 + ( a 1 ) 2 = r . \sqrt{13+(a-1)^2}=r\textrm{.}

Furthermore, if we denote the side lengths of the triangle formed \textrm{Furthermore, if we denote the side lengths of the triangle formed}

by joining ( a , 0 , 0 ) to ( 0 , b , 0 ) , ( 0 , b , 0 ) to ( 0 , 0 , c ) and ( 0 , 0 , c ) to \textrm{by joining }(a,0,0)\textrm{ to }(0,b,0)\textrm{, }(0,b,0)\textrm{ to }(0,0,c)\textrm{ and }(0,0,c)\textrm{ to }

( a , 0 , 0 ) as A , B and C respectively, we know that: (a,0,0)\textrm{ as }A\textrm{, }B\textrm{ and }C\textrm{ respectively, we know that:}

A = a 2 + b 2 A=\sqrt{a^2+b^2}

B = b 2 + c 2 B=\sqrt{b^2+c^2}

C = c 2 + a 2 . C=\sqrt{c^2+a^2}\textrm{.}

Finally, the radius of the circumcircle of the triangle with side \textrm{Finally, the radius of the circumcircle of the triangle with side}

lengths A , B and C is given by the formula: \textrm{lengths }A\textrm{, }B\textrm{ and }C\textrm{ is given by the formula:}

r = A B C ( A + B + C ) ( A + B C ) ( A B + C ) ( B A + C ) . r=\dfrac{ABC}{\sqrt{(A+B+C)(A+B-C)(A-B+C)(B-A+C)}}\textrm{.}

Substituting A , B and C in terms of a , b and c results in the formation \textrm{Substituting }A\textrm{, }B\textrm{ and }C\textrm{ in terms of }a\textrm{, }b\textrm{ and }c\textrm{ results in the formation}

of a fourth equation relating a , b , c and r . \textrm{of a fourth equation relating }a,\textrm{ }b,\textrm{ }c\textrm{ and }r\textrm{.}

So we have a system of four equations and four variables which \textrm{So we have a system of four equations and four variables which}

can be solved to yield r 4.844150887 . \textrm{can be solved to yield }r\approx 4.844150887\textrm{.}

So, rounded to 3 decimal places, r 4.844 . \textrm{So, rounded to 3 decimal places, }r\approx\boxed{4.844}\textrm{.}

I'd like to know of any other techniques people used to reach the answer... you could exploit the coplanarity of the points in a nicer way (see below)

Miles Koumouris - 4 years, 5 months ago
Michael Mendrin
Jan 5, 2017

This is really about solving the system of four equations

1 a + 2 b + 3 c = 1 \dfrac { 1 }{ a } +\dfrac { 2 }{ b } +\dfrac { 3 }{ c } =1
( a 1 ) 2 + ( 0 2 ) 2 + ( 0 3 ) 2 = r 2 { \left( a-1 \right) }^{ 2 }+{ \left( 0-2 \right) }^{ 2 }+{ \left( 0-3 \right) }^{ 2 }={ r }^{ 2 }
( 0 1 ) 2 + ( b 2 ) 2 + ( 0 3 ) 2 = r 2 { \left( 0-1 \right) }^{ 2 }+{ \left( b-2 \right) }^{ 2 }+{ \left( 0-3 \right) }^{ 2 }={ r }^{ 2 }
( 0 1 ) 2 + ( 0 2 ) 2 + ( c 3 ) 2 = r 2 { \left( 0-1 \right) }^{ 2 }+{ \left( 0-2 \right) }^{ 2 }+{ \left( c-3 \right) }^{ 2 }={ r }^{ 2 }


and there doesn't seem to be any nice way of solving this. One way would to find that

a = 1 + c 2 6 c + 1 a=1+\sqrt { { c }^{ 2 }-6c+1 }
b = 2 + c 2 6 c + 4 b=2+\sqrt { { c }^{ 2 }-6c+4 }

and then solve the following equation for c c numerically

1 a + 2 b + 3 c = 1 \dfrac { 1 }{ a } +\dfrac { 2 }{ b } +\dfrac { 3 }{ c } =1

Once we have c = 7.29718487... c=7.29718487... , we compute r = 4.84415089... r=4.84415089...

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...