2's in 22's in November 22

1122 0 (mod 2 ) 11223344 0 (mod 2 2 ) 112233445566 0 (mod 2 3 ) 1122334455667788 0 (mod 2 4 ) \begin{aligned} 1122 &\equiv 0 \text{ (mod }2) \\ 11223344 &\equiv 0 \text{ (mod }2^2) \\ 112233445566 &\equiv 0 \text{ (mod }2^3) \\ 1122334455667788 &\equiv 0 \text{ (mod }2^4) \end{aligned}

How many of the congruences above are true?

None of the answers. 1 3 4 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 21, 2018
  • Since 1122 is even, 1122 0 (mod 2) 1122 \equiv 0 \text{ (mod 2)} -- True
  • 11223344 11223300 + 44 112233 × 5 2 × 2 2 + 44 44 0 (mod 2 2 ) 11223344 \equiv 11223300 + 44 \equiv 112233 \times 5^2 \times 2^2 + 44 \equiv 44 \equiv 0 \text{ (mod }2^2) -- True
  • Similarly, 112233445566 566 6 ≢ 0 (mod 2 3 ) 112233445566 \equiv 566 \equiv 6 \not \equiv 0 \text{ (mod }2^3) -- False
  • And 1122334455667788 7788 12 ≢ 0 (mod 2 4 ) 1122334455667788 \equiv 7788 \equiv 12 \not \equiv 0 \text{ (mod }2^4) -- False

Therefore, 2 \boxed 2 equations are true.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...