Even and odd

Calculus Level 4

Given that f ( x ) = ln x f(x)=\ln { x } and g ( x ) = ln x + ln ( x + 2 ) ln ( x + 1 ) + ln ( x + 3 ) g(x)=\dfrac { \ln { x } +\ln { \left( x+2 \right) } }{ \ln { \left( x+1 \right) } +\ln { \left( x+3 \right) } } , find lim x 0 + f ( x ) g ( x ) \displaystyle \lim _{ x\to { 0 }^{ + } }{ \frac { f\left( x \right) }{ g\left( x \right) } } .

ln 3 \ln { 3 } ln 3 -\ln { 3 } ln 4 \ln { 4 } ln 3 2 \ln { \frac { 3 }{ 2 } } Does not exist 1 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 22, 2018

L = lim x 0 + f ( x ) g ( x ) = lim x 0 + ln x ( ln ( x + 1 ) + ln ( x + 3 ) ) ln x + ln ( x + 2 ) Divide up and down by ln x . = lim x 0 + ln ( x + 1 ) + ln ( x + 3 ) 1 + ln ( x + 2 ) ln x = ln 1 + ln 3 1 + 0 = ln 3 \begin{aligned} L & = \lim_{x \to 0^+} \frac {f(x)}{g(x)} \\ & = \lim_{x \to 0^+} \frac {\ln x(\ln(x+1)+\ln(x+3))}{\ln x + \ln(x+2)} & \small \color{#3D99F6} \text{Divide up and down by} \ln x. \\ & = \lim_{x \to 0^+} \frac {\ln(x+1)+\ln(x+3)}{1 + \frac {\ln(x+2)}{\ln x}} \\ & = \frac {\ln 1 + \ln 3}{1+0} = \boxed{\ln 3} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...