3-4-5 Incircles

Geometry Level pending

A B C \triangle ABC is a 3-4-5 triangle with D D and E E chosen so that the three incircles are congruent. If R R is their radius, submit 1 0 6 R \lfloor 10^6R\rfloor


The answer is 575157.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Label by r 1 {{r}_{1}} , r 2 {{r}_{2}} and r 3 {{r}_{3}} the radii of the incircles of A E D \triangle AED , E D B \triangle EDB and B C E \triangle BCE respectively. Let x = A D x=AD , y = A E y=AE , z = E B z=EB , w = E D w=ED . Then D B = 4 x DB=4-x and E C = 5 y EC=5-y . For the radii we have

r 1 = Area of AED Semiperimeter of AED = 1 2 A D A E sin A 1 2 ( x + y + w ) = 1 2 x y 3 5 1 2 ( x + y + w ) ( 1 ) {{r}_{1}}=\dfrac{\text{Area of }\triangle \text{AED}}{\text{Semiperimeter of }\triangle \text{AED}}=\dfrac{\dfrac{1}{2}AD\cdot AE\cdot \sin A}{\dfrac{1}{2}\left( x+y+w \right)}=\dfrac{\dfrac{1}{2}xy\cdot \dfrac{3}{5}}{\dfrac{1}{2}\left( x+y+w \right)} \ \ \ \ \ (1)

Similarly,

r 2 = 1 2 ( 4 x ) y 3 5 1 2 ( 4 x + w + z ) a n d r 3 = 1 2 3 ( 5 y ) 4 5 1 2 ( 5 y + 3 + z ) {{r}_{2}}=\dfrac{\dfrac{1}{2}\left( 4-x \right)y\cdot \dfrac{3}{5}}{\dfrac{1}{2}\left( 4-x+w+z \right)} \ \ \ \ \ and \ \ \ \ \ {{r}_{3}}=\dfrac{\frac{1}{2}\cdot 3\left( 5-y \right)\cdot \dfrac{4}{5}}{\dfrac{1}{2}\left( 5-y+3+z \right)}

By cosine rule on A E D \triangle AED ,

E D 2 = A D 2 + A E 2 2 A D A E cos A w 2 = x 2 + y 2 2 x y 4 5 E{{D}^{2}}=A{{D}^{2}}+A{{E}^{2}}-2AD\cdot AE\cdot \cos A\Rightarrow {{w}^{2}}={{x}^{2}}+{{y}^{2}}-2xy\cdot \dfrac{4}{5} By cosine rule on A E B \triangle AEB ,

E B 2 = A E 2 + A B 2 2 A E A B cos A z 2 = y 2 + 16 2 y 4 4 5 E{{B}^{2}}=A{{E}^{2}}+A{{B}^{2}}-2AE\cdot AB\cdot \cos A\Rightarrow {{z}^{2}}={{y}^{2}}+16-2y\cdot 4\cdot \dfrac{4}{5} Since r 1 = r 2 {{r}_{1}}={{r}_{2}} and r 1 = r 3 {{r}_{1}}={{r}_{3}} , we get a system of four equations in four variables:

x x + y + w = 4 x 4 x + w + z x y x + y + w = 4 ( 5 y ) 8 y + z w 2 = x 2 + y 2 8 5 x y z 2 = y 2 + 16 32 5 y \begin{aligned} \dfrac{x}{x+y+w} & =\dfrac{4-x}{4-x+w+z} \\[0.5em] \dfrac{xy}{x+y+w} & =\dfrac{4\left( 5-y \right)}{8-y+z} \\[0.5em] {{w}^{2}} & ={{x}^{2}}+{{y}^{2}}-\dfrac{8}{5}xy \\[0.5em] {{z}^{2}} & ={{y}^{2}}+16-\dfrac{32}{5}y \\ \end{aligned}

The solution of the system is x 2.18350128379179703 y 3.29739514976766282 z 2.40197539854143083 w 2.029952256023100340 x \approx 2.18350128379179703 \ \ \ \ \ y \approx 3.29739514976766282 \ \ \ \ \ z \approx 2.40197539854143083 \ \ \ \ \ w \approx 2.029952256023100340 Substituting in ( 1 ) (1) we can find the (common) radius R R of the three incircles: R 0.5751573629 R \approx 0.5751573629 Hence, the answer is 10 6 R = 575157 \left\lfloor {{10}^{6}}R \right\rfloor =\boxed{575157} .

Nice work! I'm curious: what tool did you use to solve the four equations?

Fletcher Mattox - 1 month ago

Log in to reply

It is WolframAlpha. First, I tried other systems with less equations and less variables (2x2), but I was getting " Standard computation time exceeded... " and no solutions. It finally worked with the system I posted.

Thanos Petropoulos - 1 month ago

Log in to reply

I had the same problem with Wolfram (with different equations). I finally had to write code to solve it numerically.

Fletcher Mattox - 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...