3 Circles & 1 Triangle

Geometry Level 2

34 + 24 2 7 \frac{-34+24\sqrt{2}}{7} 33 + 24 2 7 \frac{-33+24\sqrt{2}}{7} 34 + 23 2 7 \frac{-34+23\sqrt{2}}{7} 33 + 23 2 7 \frac{-33+23\sqrt{2}}{7}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Shahbaz Patel
Mar 12, 2014
  • Radius B -> R=sqrt(2)*r //r=radius of A
  • Radius C-> |R=sqrt(2)*2r
  • cos A= (AB^2 + AC^2 - BC^2) / 2(AB)(AC)
  • where AB=r+R, BC=R+|R, AC=r+|R :)
Tom Engelsman
Jan 20, 2021

If the ratio of the circular areas for A , B , C A,B,C are 1 : 2 : 8 1:2:8 , then we have radii lengths r A = R , r B = 2 R , r C = 2 2 R r_{A} = R, r_{B} = \sqrt{2} R, r_{C} = 2\sqrt{2}R . We can calculate the cosine of A \angle A by the Law of Cosines:

cos A = A B 2 + A C 2 B C 2 2 ( A B ) ( A C ) = ( 1 + 2 ) 2 R 2 + ( 1 + 2 2 ) 2 R 2 ( 3 2 ) 2 R 2 2 ( 1 + 2 ) ( 1 + 2 2 ) R 2 = 3 2 3 3 2 + 5 3 2 5 3 2 5 = 15 + 18 24 2 7 = 24 2 33 7 . \cos \angle A = \frac{AB^{2} + AC^{2} - BC^{2}}{2(AB)(AC)} = \frac{(1+\sqrt{2})^{2}R^{2} + (1 + 2\sqrt{2})^{2}R^{2} - (3\sqrt{2})^{2}R^{2}}{2(1+\sqrt{2})(1+2\sqrt{2})R^{2}} = \frac{3\sqrt{2} - 3}{3\sqrt{2}+5} \cdot \frac{3\sqrt{2}-5}{3\sqrt{2}-5} = \frac{15+ 18 - 24\sqrt{2}}{-7} = \boxed{\frac{24\sqrt{2}-33}{7}}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...