Mind the 3 decimal place

Calculus Level 3

True or false 1 1 + 1 4 + 1 9 + 1 16 + 1 25 + 1 36 > 1 1 + 1 2 + 1 8 + 1 48 + 1 384 + 1 3840 \begin{aligned}\frac{1}{1}+\frac{1}{4}+\frac{1}{9} + \frac{1}{16}+ \frac{1}{25}+\frac{1}{36}\cdots > \frac{1}{1}+\frac{1}{2}+\frac{1}{8}+\frac{1}{48}+\frac{1}{384} + \frac{1}{3840}\cdots \end{aligned}

False True Equal

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Naren Bhandari
Feb 5, 2018

1 1 + 1 4 + 1 9 + 1 16 + 1 25 + 1 36 > 1 1 + 1 2 + 1 8 + 1 48 + 1 384 + 1 3840 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + 1 5 2 + 1 6 2 > 1 1 + 1 2.1 + 1 4.2 + 1 8.6 + 1 24.16 + 1 64.120 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + 1 5 2 + 1 6 2 > 1 1 + 1 2.1 ! + 1 2 2 . 2 ! + 1 2 3 . 3 ! + 1 2 4 . 4 ! + 1 2 5 . 5 ! \begin{aligned} & \frac{1}{1}+\frac{1}{4}+\frac{1}{9} + \frac{1}{16}+ \frac{1}{25}+\frac{1}{36}\cdots > \frac{1}{1}+\frac{1}{2}+\frac{1}{8}+\frac{1}{48}+\frac{1}{384} + \frac{1}{3840}\cdots \\& \frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2} + \frac{1}{4^2}+ \frac{1}{5^2}+\frac{1}{6^2}\cdots > \frac{1}{1}+\frac{1}{2.1}+\frac{1}{4.2}+\frac{1}{8.6}+\frac{1}{24.16} + \frac{1}{64.120}\cdots \\& \frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2} + \frac{1}{4^2}+ \frac{1}{5^2}+\frac{1}{6^2}\cdots > \frac{1}{1}+\frac{1}{2.1!}+\frac{1}{2^2.2!}+\frac{1}{2^3.3!}+\frac{1}{2^4.4!} + \frac{1}{2^5.5! }\cdots\end{aligned} n = 1 1 n 2 > k = 0 1 2 k k ! π 2 6 > e 1 2 π 4 > 36 e \begin{aligned} &\displaystyle \sum_{n= 1}^{\infty} \frac{1}{n^2} >\displaystyle \sum_{k=0}^{\infty}\frac{1}{2^k k!} \\& \frac{\pi^2}{6} > e^{\frac{1}{2}} \Rightarrow \pi^4 > 36e \end{aligned} Hence the answer is False \text{False} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...