3 equations, 3 variables! part 4

a , b , c a,b,c are positive integers satisfying the equations

5 a + 5 b + 2 a b = 92 5 b + 5 c + 2 b c = 136 5 c + 5 a + 2 c a = 244 \begin{aligned} 5a+5b+2ab &= 92 \\ 5b+5c+2bc &= 136 \\ 5c+5a+2ca &= 244 \end{aligned}

Find 7 a + 8 b + 9 c 7a+8b+9c .


The answer is 172.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

{ 5 a + 5 b + 2 a b = 92 . . . ( 1 ) 5 b + 5 c + 2 b c = 136 . . . ( 2 ) 5 c + 5 a + 2 c a = 244 . . . ( 3 ) \begin{cases} 5a + 5b + 2ab = 92 &...(1) \\ 5b + 5c + 2bc = 136 &...(2) \\ 5c + 5a + 2ca = 244 &...(3) \end{cases}

( 1 ) : 5 a + 5 b + 2 a b = 92 5 2 ( a + b ) + a b = 46 a b = 46 5 2 ( a + b ) \begin{aligned} (1): \quad 5a + 5b + 2ab & = 92 \\ \Rightarrow \frac{5}{2} (a+b) + ab & = 46 \\ ab & = 46 - \frac{5}{2}(a+b) \end{aligned}

Since a a and b b are positive integers, then a + b a+b is even.

\(\begin{array} {} \text{If } a + b = 2 & \Rightarrow ab = 1 & \Rightarrow 46 - \frac{5}{2}(a+b) = 41 & \color{red}{\text{No solutions for } a \text{ and } b} \\ \text{If } a + b = 4 & \Rightarrow ab = \{3,4 \} & \Rightarrow 46 - \frac{5}{2}(a+b) = 36 & \color{red}{\text{No solutions for } a \text{ and } b} \\ \text{If } a + b = 6 & \Rightarrow ab = \{6,8,9 \} & \Rightarrow 46 - \frac{5}{2}(a+b) = 31 & \color{red}{\text{No solutions for } a \text{ and } b} \\ \text{If } a + b = 8 & \Rightarrow ab = \{7,12,15,16 \} & \Rightarrow 46 - \frac{5}{2}(a+b) = 26 & \color{red}{\text{No solutions for } a \text{ and } b} \\ \text{If } a + b = 10 & \Rightarrow ab = \{9,16, \color{blue}{21}, 24, 25 \} & \Rightarrow 46 - \frac{5}{2}(a+b) = \color{blue}{21} & \color{blue}{\Rightarrow a, b = 3, 7} \end{array} \)

Comparing ( 2 ) (2) and ( 3 ) (3) , we note that b < a b < a , therefore, b = 3 b = 3 and a = 7 a = 7 .

{ ( 2 ) : 15 + 5 c + 6 c = 136 c = 11 ( 3 ) : 5 c + 35 + 14 c = 244 c = 11 \Rightarrow \begin{cases} (2): &15 + 5c + 6c = 136 & \Rightarrow c = 11 \\ (3): & 5c + 35 + 14c = 244 & \Rightarrow c = 11 \end{cases}

Therefore, 7 a + 8 b + 9 c = 172 7a+8b+9c = \boxed{172}

A long method : Get value of b and c from equation first and third and form quadratic.

Aakash Khandelwal - 5 years, 8 months ago

Log in to reply

Check out my solution

Chaitnya Shrivastava - 5 years, 8 months ago
Pi Han Goh
Nov 26, 2015

Quadratic Diophantine Equations - Solve by Simon's Favorite Factoring Trick is sufficient to solve this problem.

Consider the expansion, ( 5 + 2 a ) ( 5 + 2 b ) = 25 + 10 b + 10 a + 4 a b = 25 + 2 ( 5 a + 5 b + 2 a b ) = 25 + 2 ( 92 ) = 209. (5+2a)(5+2b) = 25 + 10b + 10a + 4ab = 25 + 2(5a + 5b + 2ab) = 25 + 2(92) = 209 . Analogously, we can have the following system of equations:

( 5 + 2 a ) ( 5 + 2 b ) = 25 + 2 ( 92 ) = 209 ( 5 + 2 b ) ( 5 + 2 c ) = 25 + 2 ( 136 ) = 297 ( 5 + 2 a ) ( 5 + 2 c ) = 25 + 2 ( 244 ) = 513. \begin{aligned} (5+2a)(5+2b) &=& 25 + 2(92) = 209 \\ (5 + 2b)(5 + 2c) &=& 25 + 2(136) = 297 \\ (5 + 2a)(5 + 2c) &=&25 + 2(244) = 513. \end{aligned}

Multiplying all these equations and take its positive square root:

( 5 + 2 a ) ( 5 + 2 b ) ( 5 + 2 c ) = 5643 (5+ 2a)(5+2b)(5+2c) = 5643

Solving for a , b a,b and c c :

5 + 2 c = 5643 ÷ 209 = 27 c = 11 5 + 2 a = 5643 ÷ 297 = 19 a = 7 5 + 2 b = 5643 ÷ 513 = 11 b = 3. \begin{aligned} 5 + 2c &=& 5643 \div 209 = 27 \Rightarrow c = 11 \\ 5 + 2a &=& 5643 \div 297 = 19 \Rightarrow a = 7 \\ 5 + 2b &=& 5643 \div 513 = 11 \Rightarrow b = 3. \end{aligned}

The desired answer is 7 a + 8 b + 9 c = 7 ( 7 ) + 8 ( 3 ) + 9 ( 11 ) = 172 7a + 8b+ 9c = 7(7) + 8(3) + 9(11) = \boxed{172} .

5a+5b+2ab=92 ........》 1 \boxed 1 . 5c+5b+2bc=136 ........》 2 \boxed 2 .5c+5a+2ca=244 ........》 3 \boxed 3 . On subtracting 1 \boxed 1 from 2 \boxed 2 We get . 5c+5b+2bc-(5a+5b+2ab)=136-92 Or 5(c-a)+2b(c-a)=44
Or (5+2b)(c-a)=11×4 (by factorizing 44 into suitable factors) therefore b=3 & c-a=4 or c=a+4》 4 \boxed 4 _
_
Similarly on subtracting 2 \boxed 2 from 3 \boxed 3 and factorizing gives

(5+2c)(a-b)=108 . Now on substituting the value of 4 \boxed 4 in the above equation we get 2 a 2 a^{2} + 7a -147=0
Or (a-7)(2a+21)=0 _for positive value a=7 and therefore c=11(from 4) & required answer of the given expression is 172 \boxed {172} _ N o t e \boxed {Note} In the first equation 11×4 is the only expansion that would satisfy the requirements of the question which demands for positive integral value.


Riccardo Frosini
Oct 7, 2015

( 2 a + 5 2 / 2 ) ( 2 b + 5 2 / 2 ) = 92 + 25 / 2 (\sqrt{2}a+5\sqrt{2}/2)(\sqrt{2}b+5\sqrt{2}/2)=92+25/2

( 2 b + 5 2 / 2 ) ( 2 c + 5 2 / 2 ) = 136 + 25 / 2 (\sqrt{2}b+5\sqrt{2}/2)(\sqrt{2}c+5\sqrt{2}/2)=136+25/2

( 2 c + 5 2 / 2 ) ( 2 a + 5 2 / 2 ) = 244 + 25 / 2 (\sqrt{2}c+5\sqrt{2}/2)(\sqrt{2}a+5\sqrt{2}/2)=244+25/2

a b = 209 / 2 a'b'=209/2

b c = 297 / 2 b'c'=297/2

c a = 513 / 2 c'a'=513/2

b = 297 / ( 2 c ) b'=297/(2c')

c = 513 / ( 2 a ) c'=513/(2a')

a 297 / ( 2 c ) = 209 / 2 a'297/(2c')=209/2

a 297 / ( 2 513 / ( 2 a ) ) = 209 / 2 a'297/(2*513/(2a'))=209/2

a 297 / ( 513 / a ) = 209 / 2 a'297/(513/a')=209/2

a 2 = 361 / 2 a'^2=361/2

a = 361 / 2 = 19 2 / 2 a'=\sqrt{361/2}=19\sqrt{2}/2

b = 209 / ( 2 ( 19 2 / 2 ) ) = 209 / ( 19 2 ) = 11 2 / 2 b'=209/(2*(19\sqrt{2}/2))=209/(19\sqrt{2})=11\sqrt{2}/2

c = 513 / ( 2 ( 19 2 / 2 ) ) = 513 / ( 19 2 ) = 27 2 / 2 c'=513/(2*(19\sqrt{2}/2))=513/(19\sqrt{2})=27\sqrt{2}/2

2 a + 5 2 / 2 = 19 2 / 2 \sqrt{2}a+5\sqrt{2}/2=19\sqrt{2}/2

2 b + 5 2 / 2 = 11 2 / 2 \sqrt{2}b+5\sqrt{2}/2=11\sqrt{2}/2

2 c + 5 2 / 2 = 27 2 / 2 \sqrt{2}c+5\sqrt{2}/2=27\sqrt{2}/2

a = 7 a=7

b = 3 b=3

c = 11 c=11

7 a + 8 b + 9 c = 172 7a+8b+9c=172

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...