3 down

Calculus Level 4

0 π / 2 8 sin x cos x 3 + cos 4 x d x = ? \large \int_0^{\pi/2} \dfrac{8\sin x \cos x}{3+\cos 4x} \, dx = \, ?

π 6 \dfrac{\pi}6 π 2 \dfrac{\pi}2 π 3 \dfrac{\pi}3 π 4 \dfrac{\pi}4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

0 π 2 8 sin x cos x 3 + cos ( 4 x ) d x = 0 π 2 4 sin ( 2 x ) 3 + 2 cos 2 ( 2 x ) 1 d x = 0 π 2 2 sin ( 2 x ) 1 + cos 2 ( 2 x ) d x Let tan θ = cos ( 2 x ) sec 2 θ d θ = 2 sin ( 2 x ) d x = π 4 π 4 sec 2 θ 1 + tan 2 θ d θ Note that 1 + tan 2 θ = sec 2 θ = π 4 π 4 sec 2 θ sec 2 θ d θ = π 4 π 4 d θ = [ θ ] π 4 π 4 = π 2 \begin{aligned} \int_0^\frac{\pi}{2} \frac{8\sin x \cos x}{3 + \cos (4x)} dx & = \int_0^\frac{\pi}{2} \frac{4\sin (2x)}{3 + 2\cos^2 (2x) -1 } dx \\ & = \int_0^\frac{\pi}{2} \frac{2\sin (2x)}{1 + \cos^2 (2x)} dx \quad \quad \small \color{#3D99F6}{\text{Let} \tan \theta = \cos (2x) \quad \Rightarrow \sec^2 \theta \space d \theta = - 2\sin (2x) \space dx} \\ & = \int_{\frac{\pi}{4}}^{\color{#D61F06}{-\frac{\pi}{4}}} \frac{\color{#D61F06}{-} \sec^2 \theta}{1+\tan^2 \theta} d\theta \quad \quad \space \space \small \color{#3D99F6}{\text{Note that }1+\tan^2 \theta = \sec^2 \theta} \\ & = \int_{\color{#D61F06}{-\frac{\pi}{4}}}^{\frac{\pi}{4}} \frac{\sec^2 \theta}{\sec^2 \theta} d\theta = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} d\theta = \left[ \theta \right]_{-\frac{\pi}{4}}^{\frac{\pi}{4}} = \boxed{\frac{\pi}{2}} \end{aligned}

can you explain a little better how do you obtain sec^2(t) from 1+cos^2(2x) with the substitution tan(t)=cos(2x), ( i am referring to the denominator in the second line)please?

And can you also explain the reason why the minus sign in the substitution disappear? Should not be [-( sec^2(t)/sec^2(t))]?

guido barta - 5 years, 5 months ago

Log in to reply

I have added a line and red markings to explain your two questions. Hope that they help.

Chew-Seong Cheong - 5 years, 5 months ago

Log in to reply

thank you..now i understand

guido barta - 5 years, 5 months ago
Mohammad Hamdar
Jan 4, 2016

I = 0 π 2 4 sin 2 x 3 + 2 cos 2 2 x 1 = 0 π 2 2 sin 2 x 1 + cos 2 2 x k n o w i n g t h a t ( cos 2 x ) = 2 sin 2 x s o , I = { π 2 0 arctan ( cos 2 x ) = π 2 I=\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { 4\sin { 2x } }{ 3+2\cos ^{ 2 }{ 2x\quad -1 } } } \quad \\ =-\int _{ 0 }^{ \frac { \pi }{ 2 } }{ \frac { -2\sin { 2x } }{ 1+\cos ^{ 2 }{ 2x } } } \quad \quad \quad \quad \quad \quad \quad knowing\quad that\quad (\cos { 2x)'=-2\sin { 2x } \quad } \\ so,\quad I=\begin{cases} \frac { \pi }{ 2 } \\ 0 \end{cases}-\arctan { (\cos { 2x } } )\quad =\quad \frac { \pi }{ 2 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...