3 in 3 -- try 3

Geometry Level 5

I J K \triangle IJK is an isosceles triangle with three congruent incircles. P J I L . PJ \hspace{1mm}\bot\hspace{1mm} IL.

If R R is the radius of the circle, what is the ratio P J R ? \dfrac{PJ}{R}?


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

In my solution of An Old Sangaku Problem by Michael Mendrin I prove that J P I \triangle JPI and J P L \triangle JPL are 3 3 - 4 4 - 5 5 right triangles with J P JP being the longer leg. Hence, J P R = 4 1 \dfrac{JP}{R}=\dfrac{4}{1} . The answer is 4 \boxed{4} .

Chew-Seong Cheong
Nov 19, 2020

Proof of P I J \triangle PIJ and P L J \triangle PLJ are 3 3 - 4 4 - 5 5 right triangles given here.

Note that P I J \triangle PIJ and P L J \triangle PLJ are congruent right triangles. Let P J I = P J L = θ \angle PJI = \angle PJL = \theta , then P I J = 9 0 θ \angle PIJ = 90^\circ - \theta , K I L = 3 θ 9 0 \angle KIL = 3\theta - 90^\circ , and K L I = 9 0 + θ \angle KLI = 90^\circ + \theta . Let I J = 1 IJ = 1 . If R R is the radius of the three circles, then:

R cot P J I 2 + R cot P I J 2 = I J R cot θ 2 + R cot ( 4 5 θ 2 ) = 1 . . . ( 1 ) \begin{aligned} R \cot \frac {\angle PJI}2 + R \cot \frac {\angle PIJ}2 & = IJ \\ R \cot \frac \theta 2 + R \cot \left(45^\circ - \frac \theta 2\right) & = 1 & ...(1) \end{aligned}

And

R cot K L I 2 + R cot K I L 2 = I L R cot ( 4 5 + θ 2 ) + R cot ( 3 θ 2 4 5 ) = 2 sin θ . . . ( 2 ) \begin{aligned} R \cot \frac {\angle KLI}2 + R \cot \frac {\angle KIL}2 & = IL \\ R \cot \left(45^\circ + \frac \theta 2\right) + R \cot \left(\frac {3\theta}2 - 45^\circ \right) & = 2\sin \theta & ...(2) \end{aligned}

From ( 2 ) ( 1 ) \dfrac {(2)}{(1)} :

cot ( 4 5 + θ 2 ) + cot ( 3 θ 2 4 5 ) cot θ 2 + cot ( 4 5 θ 2 ) = 2 sin θ Let t = tan θ 2 1 t 1 + t + 3 t t 3 1 3 t 2 + 1 3 t t 3 1 3 t 2 1 1 t + 1 + t 1 t = 4 t 1 + t 2 1 t 1 + t 1 + 3 t 3 t 2 t 3 1 3 t 3 t 2 + t 3 1 + t 2 t t 2 = 4 t 1 + t 2 1 t 1 + t ( 1 t ) ( 1 + 4 t + t 2 ) ( 1 + t ) ( 1 4 t + t 2 ) = 4 t 1 + t 2 1 + t 2 t t 2 8 t ( t 1 ) ( 1 + t ) ( 1 4 t + t 2 ) = 4 1 t 2 t + 4 t 2 2 t 3 = 1 3 t 3 t 2 + t 3 3 t 3 7 t 2 t + 1 = 0 ( 3 t 1 ) ( t 2 2 t 1 ) = 0 t = 1 3 , 1 + 2 , 1 2 For acute θ t = tan θ 2 = 1 3 \begin{aligned} \frac {\cot \left(45^\circ + \frac \theta 2\right) + \cot \left(\frac {3\theta}2 - 45^\circ \right)}{\cot \frac \theta 2 + \cot \left(45^\circ - \frac \theta 2 \right)} & = 2\sin \theta & \small \blue{\text{Let }t=\tan \frac \theta 2} \\ \frac {\frac {1-t}{1+t} + \frac {\frac {3t-t^3}{1-3t^2}+1}{\frac {3t-t^3}{1-3t^2}-1}}{\frac 1t + \frac {1+t}{1-t}} & = \frac {4t}{1+t^2} \\ \frac {\frac {1-t}{1+t} - \frac {1+3t-3t^2-t^3}{1-3t-3t^2+t^3}}{\frac {1+t^2}{t-t^2}} & = \frac {4t}{1+t^2} \\ \frac {1-t}{1+t} - \frac {(1-t)(1+4t+t^2)}{(1+t)(1-4t+t^2)} & = \frac {4t}{1+t^2} \cdot \frac {1+t^2}{t-t^2} \\ \frac {8t(t-1)}{(1+t)(1-4t+t^2)} & = \frac 4{1-t} \\ - 2t+4t^2 - 2t^3 & = 1-3t-3t^2+t^3 \\ 3t^3 - 7t^2 - t + 1 & = 0 \\ (3t-1)(t^2-2t-1) & = 0 \\ t & = \frac 13, 1 + \sqrt 2, 1 - \sqrt 2 & \small \blue{\text{For acute }\theta} \\ \implies t = \tan \frac \theta 2 & = \frac 13 \end{aligned}

As tan θ 2 = 1 3 \tan \dfrac \theta 2 = \dfrac 13 , tan θ = 2 t 1 t 2 = 2 3 1 1 9 = 3 4 \implies \tan \theta = \dfrac {2t}{1-t^2} = \dfrac {\frac 23}{1-\frac 19} = \dfrac 34 . This implies that P I J \triangle PIJ and P L J \triangle PLJ are 3 3 - 4 4 - 5 5 right triangles with side lengths 0.6 0.6 - 0.8 0.8 - 1 1 , where P J = 0.8 PJ = 0.8 and the inradius R R is given by:

0.6 + 0.8 + 1 2 R = 0.6 0.8 2 2.4 R = 0.48 R = 0.2 P J R = 0.8 0.2 = 4 \begin{aligned} \frac {0.6+0.8+1}2 R & = \frac {0.6 \cdot 0.8}2 \\ 2.4 R & = 0.48 \\ \implies R & = 0.2 \\ \implies \frac {PJ}R & = \frac {0.8}{0.2} = \boxed 4 \end{aligned}


@Fletcher Mattox , The answer to the previous problem should be 39 \boxed {39} . Because K I = K J = I J 2 s e c ( 2 θ ) K J I J = 1 + tan 2 θ 2 ( 1 tan 2 θ ) = 1 + 9 16 2 ( 1 9 16 ) = 25 14 KI = KJ = \dfrac {IJ}2 sec (2\theta) \implies \dfrac {KJ}{IJ} = \dfrac {1+\tan^2 \theta}{2(1-\tan^2 \theta)} = \dfrac {1+\frac 9{16}}{2\left(1-\frac 9{16}\right)} = \dfrac {25}{14} . Therefore p + q = 39 p+q = \boxed{39}

Vinod Kumar
Nov 19, 2020

Solve y+z-x=2, x^2=y^2+z^2, x/(2w+2x)=cos(2u), z/y=tan(u), s=(2w+2z+x)/2, (s-w-x)(s-w)(s-2z)=s, x>0,y>0,z>0,w>0 using WolframAlpha

Where, sides, IJ=x, PJ=y, PI=z, LJ=x, KL=w. I have assumed circles with radius 1, used inscribed circle radius formula for (1) right triangle with sides x, y and z (2) triangle with sides w, w+x and 2z (3) used angle relations with angle LJI=2u and angle LJP=u.

Answer

w=55/14, x=5, y=4, z=3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...