3 Intersecting Planes

Geometry Level pending

Find the sum of the coordinates of the common point of planes Π 1 \Pi _{1} (which is formed from line l l and point A A ), Π 2 \Pi _{2} and Π 3 \Pi _{3} .

l : x 2 5 = 4 y 2 = 3 z l:\frac{x-2}{5}=\frac{4-y}{2}=-3-z

A : ( 8 2 1 ) A:\begin{pmatrix} 8\\ 2\\ 1 \end{pmatrix}

Π 2 : 3 x + 20 y 15 z = 1 \Pi _{2}:-3x+20y-15z=1

Π 3 : 3 x + y z = 9 \Pi _{3}:3x+y-z=9


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mateo Reddy
Jul 25, 2016

Finding Π 1 \Pi _{1}

Express x x , y y and z z in terms of λ \lambda by equating λ \lambda to each component of l l

x = 2 + 5 λ x=2+5\lambda , y = 4 2 λ y=4-2\lambda , z = 3 λ z=-3-\lambda

Hence, the vector equation of l l is

r = ( 2 4 3 ) + λ ( 5 2 1 ) r=\begin{pmatrix} 2\\ 4\\ -3 \end{pmatrix} +\lambda \begin{pmatrix} 5\\ -2\\ -1 \end{pmatrix}

Let X X be the point on l l such that A X \vec{AX} is perpendicular to l l

A X = X A = n \vec{AX}=X-A=\vec{n}

= ( 2 + 5 λ 4 2 λ 3 λ ) ( 8 2 1 ) =\begin{pmatrix} 2+5\lambda \\ 4-2\lambda \\ -3-\lambda \end{pmatrix}-\begin{pmatrix} 8\\ 2\\ 1 \end{pmatrix}

= ( 6 + 5 λ 2 2 λ 4 λ ) =\begin{pmatrix} -6+5\lambda \\ 2-2\lambda \\ -4-\lambda \end{pmatrix}

Using the fact that n l = 0 \vec{n}\cdot \vec{l}=0

( 6 + 5 λ 2 2 λ 4 λ ) ( 5 2 1 ) = 0 \begin{pmatrix} -6+5\lambda \\ 2-2\lambda \\ -4-\lambda \end{pmatrix}\cdot \begin{pmatrix} 5\\ -2\\ -1 \end{pmatrix}=0

30 + 25 λ 4 + 4 λ + 4 + λ = 0 -30+25\lambda -4+4\lambda +4+\lambda =0

λ = 1 \lambda =1

n = ( 1 0 5 ) \vec{n}=\begin{pmatrix} -1\\ 0\\ -5 \end{pmatrix}

Express Π 1 \Pi _{1} in Cartesian form

( x y z ) ( 1 0 5 ) = ( 8 2 1 ) ( 1 0 5 ) = 8 5 = 13 \begin{pmatrix} x\\ y\\ z \end{pmatrix}\cdot \begin{pmatrix} -1\\ 0\\ -5 \end{pmatrix}=\begin{pmatrix} 8\\ 2\\ 1 \end{pmatrix}\cdot \begin{pmatrix} -1\\ 0\\ -5 \end{pmatrix}=-8-5=-13

x + 5 z = 13 x+5z=13

Find the general equation for the intersection point of Π 1 \Pi _{1} and Π 2 \Pi _{2}

{ x + 5 z = 13 3 x + 20 y 15 z = 1 \left\{\begin{matrix} x+5z=13\\ -3x+20y-15z=1 \end{matrix}\right.

Adding the equations gives 20 y = 40 20y=40 so y = 2 y=2

x = 13 5 z x=13-5z and since z z can be any number, it can be replaced by variable t t

Summarising the results

x = 13 5 t x=13-5t , y = 2 y=2 , z = t z=t where t R t \in \mathbb{R}

Substitute x x , y y and z z into Π 3 \Pi _{3} to find t t

3 ( 13 5 t ) + 2 t = 9 3(13-5t)+2-t=9

t = 2 t=2

The coordinates of the common point are

( 13 5 t , 2 , t ) = ( 3 , 2 , 2 ) \left ( 13-5t, 2, t \right )=\left ( 3, 2, 2 \right )

Sum of coordinates

3 + 2 + 2 = 7 3+2+2=\textbf{7}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...