3 unknowns, 1 equation

Algebra Level 5

a , b a, b and c c are real numbers with a < b < c < 2 a a<b<c<2a satisfying

a ( a 2 b a + b 2 c b + c 2 2 a c ) = ( a + b + c ) 2 \large a\left(\frac{a^2}{b-a}+\frac{b^2}{c-b}+\frac{c^2}{2a-c}\right)=(a+b+c)^2

Find the value of b c a 2 \displaystyle \frac{bc}{a^2}


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Julian Poon
Jun 3, 2018

a ( a 2 b a + b 2 c b + c 2 2 a c ) = ( ( b a ) + ( c b ) + ( 2 a c ) ) ( a 2 b a + b 2 c b + c 2 2 a c ) ( a 2 b a ( b a ) + b 2 c b ( c b ) + c 2 2 a c ( 2 a c ) ) 2 ( ) = ( a + b + c ) 2 \begin{aligned} a\left(\frac{a^2}{b-a}+\frac{b^2}{c-b}+\frac{c^2}{2a-c}\right)&=\left(\left(b-a\right)+\left(c-b\right)+\left(2a-c\right)\right)\left(\frac{a^2}{b-a}+\frac{b^2}{c-b}+\frac{c^2}{2a-c}\right) \\ &\ge \left(\sqrt{\frac{a^2}{b-a}\left(b-a\right)}+\sqrt{\frac{b^2}{c-b}\left(c-b\right)}+\sqrt{\frac{c^2}{2a-c}\left(2a-c\right)}\right)^2 \quad (*) \\ &= (a+b+c)^2 \end{aligned} (*) By the Cauchy–Schwarz inequality

Since the question gives that equality holds:

a 2 ( b a ) 2 = b 2 ( c b ) 2 = c 2 ( 2 a c ) 2 \frac{a^2}{\left(b-a\right)^2}=\frac{b^2}{\left(c-b\right)^2}=\frac{c^2}{\left(2a-c\right)^2}

b a = c b = 2 a c \frac{b}{a}=\frac{c}{b}=\frac{2a}{c}

b c a 2 = 2 \frac{bc}{a^2}=\boxed{2}

If anything, Cauchy-Schwarz gives you a ( a 2 b a + b 2 c b + c 2 2 a c ) ( a + b + c ) 2 . a \left( \frac{a^2}{b - a} + \frac{b^2}{c - b} + \frac{c^2}{2a - c} \right) \ge (a + b + c)^2.

Jon Haussmann - 3 years ago

Log in to reply

My bad, I'll edit the problem now

Julian Poon - 3 years ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...