a , b and c are real numbers with a < b < c < 2 a satisfying
a ( b − a a 2 + c − b b 2 + 2 a − c c 2 ) = ( a + b + c ) 2
Find the value of a 2 b c
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
If anything, Cauchy-Schwarz gives you a ( b − a a 2 + c − b b 2 + 2 a − c c 2 ) ≥ ( a + b + c ) 2 .
Problem Loading...
Note Loading...
Set Loading...
a ( b − a a 2 + c − b b 2 + 2 a − c c 2 ) = ( ( b − a ) + ( c − b ) + ( 2 a − c ) ) ( b − a a 2 + c − b b 2 + 2 a − c c 2 ) ≥ ( b − a a 2 ( b − a ) + c − b b 2 ( c − b ) + 2 a − c c 2 ( 2 a − c ) ) 2 ( ∗ ) = ( a + b + c ) 2 (*) By the Cauchy–Schwarz inequality
Since the question gives that equality holds:
( b − a ) 2 a 2 = ( c − b ) 2 b 2 = ( 2 a − c ) 2 c 2
a b = b c = c 2 a
a 2 b c = 2