3 variables, 2 equations, 1 answer

x + y = z 2 x 2 + y 2 = z 3 \large x + y = z^2\\ \large x^2 + y^2 = z^3

If positive integral solutions ( x 1 , y 1 , z 1 ) , ( x 2 , y 2 , z 2 ) , , ( x n , y n , z n ) (x_1, y_1, z_1), (x_2, y_2, z_2), \ldots, (x_n, y_n, z_n) satisfy the system of equations above, find the value of

i = 1 n ( x i + y i + z i ) \large \displaystyle \sum_{i=1}^n (x_i + y_i + z_i)


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ayush Verma
Jun 12, 2015

Method 1

U s i n g p o w e r m e a n i n e q u a l i t y , x + y 2 x 2 + y 2 2 ( x + y 2 ) 2 x 2 + y 2 2 z 4 4 z 3 2 z 2 ( a s z i s + v e s o c a n c e l z 3 ) s o p o s s i b l e + v e i n t e g r a l v a l u e s o f z a r e 1 & 2 b y h i t & t r i a l o n l y o n e s o l u t i o n ( x , y , z ) = ( 2 , 2 , 2 ) A n s = 2 + 2 + 2 = 6 Using\quad power-mean\quad inequality,\\ \\ \cfrac { x+y }{ 2 } \le \sqrt { \cfrac { { x }^{ 2 }+{ y }^{ 2 } }{ 2 } } \\ \\ \Rightarrow { \left( \cfrac { x+y }{ 2 } \right) }^{ 2 }\le \cfrac { { x }^{ 2 }+{ y }^{ 2 } }{ 2 } \\ \\ \Rightarrow \cfrac { { z }^{ 4 } }{ 4 } \le \cfrac { { z }^{ 3 } }{ 2 } \\ \\ \Rightarrow z\le 2\quad (as\quad z\quad is\quad +ve\quad so\quad cancel\quad { z }^{ 3 })\\ \\ so\quad possible\quad +ve\quad integral\quad values\quad of\quad z\quad are\quad 1\& 2\\ \\ by\quad hit\quad \& \quad trial\quad only\quad one\quad solution\quad (x,y,z)=(2,2,2)\\ \\ \Rightarrow Ans=2+2+2=6

Method 2

L e t ( b y e q n 2 ) x = z 3 2 cos θ , y = z 3 2 sin θ B y e q n 1 , z 3 2 ( cos θ + sin θ ) = z 2 z 1 2 = cos θ + sin θ z = 1 + sin 2 θ s o p o s s i b l e + v e i n t e g r a l v a l u e s o f z a r e 1 & 2 b y h i t & t r i a l o n l y o n e s o l u t i o n ( x , y , z ) = ( 2 , 2 , 2 ) A n s = 2 + 2 + 2 = 6 Let(by\quad { eq }^{ n }\quad 2)\quad x={ z }^{ \cfrac { 3 }{ 2 } }\cos { \theta ,y= } { z }^{ \cfrac { 3 }{ 2 } }\sin { \theta } \\ \\ By\quad { eq }^{ n }\quad 1,\\ \\ { z }^{ \cfrac { 3 }{ 2 } }\left( \cos { \theta +\sin { \theta } } \right) ={ z }^{ 2 }\\ \\ \Rightarrow { z }^{ \cfrac { 1 }{ 2 } }=\cos { \theta +\sin { \theta } } \\ \\ \Rightarrow z=1+\sin { 2\theta } \\ \\ so\quad possible\quad +ve\quad integral\quad values\quad of\quad z\quad are\quad 1\& 2\\ \\ by\quad hit\quad \& \quad trial\quad only\quad one\quad solution\quad (x,y,z)=(2,2,2)\\ \\ \Rightarrow Ans=2+2+2=6

Patrick Corn
Jun 8, 2015

This problem seems to be incorrect. There should be solutions ( x , y ) (x,y) for any z z with 1 < z 2 1 < z \le 2 . Namely, let x = z 2 2 ( 1 + 2 z 1 ) y = z 2 2 ( 1 2 z 1 ) \begin{aligned} x &= \frac{z^2}2 \left( 1 + \sqrt{\frac2{z}-1} \right) \\ y &= \frac{z^2}2 \left( 1 - \sqrt{\frac2{z}-1} \right) \\ \end{aligned} For instance, if z = 8 / 5 z = 8/5 we get ( x , y ) = ( 48 / 5 , 16 / 5 ) (x,y) = (48/5,16/5) .

Perhaps we want to restrict to positive integers? In that case, we get x = y = z = 2 x = y = z = 2 as the only solutions.

The problem of non-negative integers is much more interesting.

Daniel Liu - 6 years ago

Log in to reply

Really? I'm pretty sure the above formulas parameterize the solutions (up to switching x x and y y ), just by substituting y = z 2 x y = z^2-x in the second equation, writing it as a quadratic in x x , and using the quadratic formula.

Clearly z 0 z \ge 0 , and if z = 0 z = 0 we quickly get x = y = 0 x = y = 0 , and if z = 1 z = 1 we quickly get ( 1 , 0 , 1 ) (1,0,1) and ( 0 , 1 , 1 ) (0,1,1) , and if z = 2 z = 2 we quickly get ( 2 , 2 , 2 ) (2,2,2) , and if z 3 z \ge 3 there are no real solutions.

Patrick Corn - 6 years ago

Log in to reply

I was referring that it was interesting because there were more solutions.

Daniel Liu - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...