3 v/s 4

Algebra Level 3

If real numbers x x and y y satisfy the following equations { ( 3 x ) log 3 = ( 4 y ) log 4 4 log x = 3 log y \large \begin{cases} (3x)^{\log 3} = (4y)^{\log 4} \\ 4^{\log x} = 3^{\log y} \end{cases} Find the value of x + y x y \dfrac{x+y}{x-y} .

7 3 4 1 0 2 5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

It is given that:

{ ( 3 x ) log 3 = ( 4 y ) log 4 . . . ( 1 ) 4 log x = 3 log y . . . ( 2 ) \begin{cases} (3x)^{\log 3} = (4y)^{\log 4} & ...(1) \\ 4^{\log x} = 3^{\log y} & ...(2) \end{cases}

Taking logarithm on both sides of both the equations.

( 1 ) : log 3 ( log 3 + log x ) = log 4 ( log 4 + log y ) log 2 3 + log 3 log x = log 2 4 + log 4 log y . . . ( 4 ) ( 2 ) : log 4 log x = log 3 log y . . . ( 5 ) ( 4 ) × log 3 : log 3 3 + log 2 3 log x = log 3 log 2 4 + log 4 log 3 log y log 3 3 + log 2 3 log x = log 3 log 2 4 + log 4 log 4 log x log 2 3 log x log 3 4 log x = log 3 log 2 4 log 3 3 ( log 2 3 log 3 4 ) log x = log 3 ( log 2 4 log 2 3 ) log x = log 3 x = 3 1 = 1 3 ( 5 ) : log 4 log 3 = log 3 log y y = 4 1 = 1 4 \begin{aligned}(1): \quad \quad \quad \quad \ \log 3 (\log 3 + \log x) & = \log 4 (\log 4 + \log y) \\ \log^2 3 + \log 3 \log x & = \log^2 4 + \log 4 \log y \quad ... (4) \\ (2): \quad \quad \quad \quad \quad \quad \quad \quad \color{#3D99F6}{\log 4 \log x} & = \color{#3D99F6}{\log 3 \log y} \quad \quad \quad \quad \ \ ...(5) \\ (4) \times \log 3: \quad \log^3 3 + \log^2 3 \log x & = \log 3 \log^2 4 + \log 4 \color{#3D99F6}{\log 3 \log y} \\ \log^3 3 + \log^2 3 \log x & = \log 3 \log^2 4 + \log 4 \color{#3D99F6}{\log 4 \log x} \\ \log^2 3 \log x - \log^3 4 \log x & = \log 3 \log^2 4 - \log^3 3 \\ (\log^2 3 - \log^3 4 )\log x & = \log 3 (\log^2 4 - \log^2 3) \\ \implies \log x & = - \log 3 \\ \implies x & = 3^{-1} = \frac{1}{3} \\ (5): \quad \quad \quad \quad \quad \quad \quad \quad \color{#3D99F6}{- \log 4 \log 3} & = \color{#3D99F6}{\log 3 \log y} \\ \implies y & = 4^{-1} = \frac{1}{4} \end{aligned}

Therefore, x + y x y = 1 3 + 1 4 1 3 1 4 = 7 \implies \dfrac{x+y}{x-y} = \dfrac{\frac{1}{3}+\frac{1}{4}}{\frac{1}{3}-\frac{1}{4}} = \boxed{7}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...