3 vs 5

Calculus Level 5

1 3 1 5 + 1 3 + 2 3 1 5 + 2 5 + 1 3 + 2 3 + 3 3 1 5 + 2 5 + 3 5 + \frac{1^3}{1^5}+\frac{1^3+2^3}{1^5+2^5}+\frac{1^3+2^3+3^3}{1^5+2^5+3^5}+\cdots If the given sum equals

L + M π tan ( π sin ( π M ) ) N \frac{L+\sqrt{M}\pi\tan \left(\pi\sin \left( \frac{\pi}{M}\right) \right)}{N}

for square free positive integers L , M , N L,M,N . Find L + M + N L+M+N .


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We'll use k = 1 n k 5 = n 2 ( n + 1 ) 2 ( 2 n 2 + 2 n 1 ) 12 \displaystyle \sum_{k=1}^{n}k^5=\frac{n^2(n+1)^2(2n^2+2n-1)}{12} & k = 1 n k 3 = n 2 ( n + 1 ) 2 4 \displaystyle \sum_{k=1}^{n}k^3 = \frac{n^2(n+1)^2}{4} ,

So our sum equals S = n = 1 3 2 n 2 + 2 n 1 = 3 2 n = 1 1 ( n + 3 + 1 2 ) ( n + 1 3 2 ) \displaystyle S=\sum_{n=1}^{\infty} \frac{3}{2n^2+2n-1}=\frac{3}{2} \sum_{n=1}^{\infty} \frac{1}{(n+\frac{\sqrt{3}+1}{2})(n+\frac{1-\sqrt{3}}{2}) }

By partial fraction decomposition we have, S = 3 2 n = 1 1 n + 1 3 2 1 n + 3 + 1 2 \displaystyle S = \frac{\sqrt{3}}{2} \sum_{n=1}^{\infty} \frac{1}{n+\frac{1-\sqrt{3}}{2}} -\frac{1}{n+\frac{\sqrt{3}+1}{2}} and by Digamma reflection formula,

S = 3 2 ( ψ ( 3 + 1 2 ) ψ ( 1 3 2 ) + 2 1 3 2 1 + 3 ) = 3 π 2 cot ( π 2 3 2 ) + 3 = 3 π 2 tan ( π sin ( π 3 ) ) + 3 = 6 + 3 π tan ( π sin ( π 3 ) ) 2 \displaystyle S= \frac{\sqrt{3}}{2} (\psi(\frac{\sqrt{3}+1}{2})-\psi(\frac{1-\sqrt{3}}{2}) +\frac{2}{1-\sqrt{3}}-\frac{2}{1+\sqrt{3}}) = \frac{\sqrt{3}\pi}{2}\cot(\frac{\pi}{2}-\frac{\sqrt{3}}{2}) + 3 = \frac{\sqrt{3}\pi}{2}\tan(\pi\sin(\frac{\pi}{3}))+3 = \frac{6+\sqrt{3}\pi\tan(\pi\sin(\frac{\pi}{3}))}{2} and thus making the answer 2 + 3 + 6 = 11 \boxed{2+3+6=11}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...