1 5 1 3 + 1 5 + 2 5 1 3 + 2 3 + 1 5 + 2 5 + 3 5 1 3 + 2 3 + 3 3 + ⋯ If the given sum equals
N L + M π tan ( π sin ( M π ) )
for square free positive integers L , M , N . Find L + M + N .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
We'll use k = 1 ∑ n k 5 = 1 2 n 2 ( n + 1 ) 2 ( 2 n 2 + 2 n − 1 ) & k = 1 ∑ n k 3 = 4 n 2 ( n + 1 ) 2 ,
So our sum equals S = n = 1 ∑ ∞ 2 n 2 + 2 n − 1 3 = 2 3 n = 1 ∑ ∞ ( n + 2 3 + 1 ) ( n + 2 1 − 3 ) 1
By partial fraction decomposition we have, S = 2 3 n = 1 ∑ ∞ n + 2 1 − 3 1 − n + 2 3 + 1 1 and by Digamma reflection formula,
S = 2 3 ( ψ ( 2 3 + 1 ) − ψ ( 2 1 − 3 ) + 1 − 3 2 − 1 + 3 2 ) = 2 3 π cot ( 2 π − 2 3 ) + 3 = 2 3 π tan ( π sin ( 3 π ) ) + 3 = 2 6 + 3 π tan ( π sin ( 3 π ) ) and thus making the answer 2 + 3 + 6 = 1 1