#31 Measure Your Calibre

Calculus Level 3

d y d x = x 2 + y 2 + 1 2 x y \large{\dfrac{dy}{dx} = \dfrac{x^2+y^2+1}{2xy}} .

What is the solution of the differential equation above satisfying y ( 1 ) = 1 y(1)=1 ?

a system of circles a system of hyperbola ( x 2 ) 2 + ( y 3 ) 2 = 5 (x-2)^2+(y-3)^2=5 y 2 = x ( 1 + x ) 1 y^2=x(1+x)-1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 12, 2017

Relevant wiki: Bernoulli Equation

d y d x = x 2 + y 2 + 1 2 x y d y d x y 2 x = x 2 + 1 2 x y Bernoulli equation: y + p ( x ) y = q ( x ) y n d d x v v 2 x = x 2 + 1 2 x v Let v = y 1 n = y 2 , y = v 1 2 v d v d x v 2 x = x 2 + 1 2 x v Multiplying both sides by 2 v d v d x v x = x 2 + 1 x First-order ODE: v + v P ( x ) = Q ( x ) \begin{aligned} \frac {dy}{dx} & = \frac {x^2+y^2+1}{2xy} \\ \frac {dy}{dx} - \frac y{2x} & = \frac {x^2+1}{2xy} & \small \color{#3D99F6} \text{Bernoulli equation: }y' + p(x)y = q(x)y^n \\ \frac {d}{dx}\sqrt v - \frac {\sqrt v}{2x} & = \frac {x^2+1}{2x\sqrt v} & \small \color{#3D99F6} \text {Let } v=y^{1-n} = y^2, \ y = \sqrt v \\ \frac 1{2\sqrt v} \cdot \frac {dv}{dx} - \frac {\sqrt v}{2x} & = \frac {x^2+1}{2x\sqrt v} & \small \color{#3D99F6} \text{Multiplying both sides by }2\sqrt v \\ \frac {dv}{dx} - \frac vx & = \frac {x^2+1}x & \small \color{#3D99F6} \text{First-order ODE: } v' + vP(x) = Q(x) \end{aligned}

v = exp ( d x x ) x 2 + 1 x d x + C exp ( d x x ) v = e P ( x ) d x Q ( x ) d x + C e P ( x ) d x y 2 = x 2 + 1 x 2 d x + C 1 x where C is the constant of integration. = x 2 1 + C x Putting y ( 1 ) = 1 1 = 1 1 + C C = 1 y 2 = x 2 1 + x = x ( 1 + x ) 1 \begin{aligned} \implies v & = \frac {\int \exp \left(- \int \frac {dx}x \right) \cdot \frac {x^2+1}x \ dx+C}{\exp \left(-\int \frac {dx}x \right)} & \small \color{#3D99F6} v = \frac {\int e^{\int P(x) \ dx} Q(x) \ dx+C}{e^{\int P(x) \ dx}} \\ y^2 & = \frac {\int \frac {x^2+1}{x^2} dx + C }{\frac 1x} & \small \color{#3D99F6} \text{where }C \text{ is the constant of integration.} \\ & = x^2 - 1 + Cx & \small \color{#3D99F6} \text{Putting }y(1) = 1 \\ 1 & = 1-1+C \\ \implies C & = 1 \\ \implies y^2 & = x^2 - 1 + x \\ & = \boxed{x(1+x)-1} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...