32 Centimeters

Calculus Level 1

The radius, r, of a circle is increasing at a rate of 4 centimeters per minute. Find the rates of change of the area when r = 32 centimeters. Answer is in (cm^2)/min.

1024π 128π 64π 256π

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Justin Tuazon
Dec 12, 2014

L e t r b e t h e r a d i u s o f t h e c i r c l e L e t t b e t h e t i m e r = 4 t r = 32 , 32 = 4 t t = 8 L e t A b e t h e a r e a o f t h e c i r c l e A = π r 2 S i n c e r = 4 t , A = 16 π t 2 d A d t = 32 π t S i n c e t h e r a i d u s i s 32 w h e n t h e t i m e i s 8 , 32 π ( 8 ) = 256 π T h e r e f o r e , t h e a n s w e r i s 256 π Let\quad r\quad be\quad the\quad radius\quad of\quad the\quad circle\\ Let\quad t\quad be\quad the\quad time\\ \qquad \qquad r=4t\\ r=32,\\ \qquad \qquad 32=4t\\ \qquad \qquad t=8\\ Let\quad A\quad be\quad the\quad area\quad of\quad the\quad circle\\ A=\pi { r }^{ 2 }\\ Since\quad r=4t,\\ \qquad A=16\pi { t }^{ 2 }\\ \frac { dA }{ dt } =32\pi t\\ \\ Since\quad the\quad raidus\quad is\quad 32\quad when\quad the\quad time\quad is\quad 8,\\ \\ 32\pi (8)=256\pi \\ \\ \boxed { Therefore,\quad the\quad answer\quad is\quad 256\pi }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...