#32 Hua Luo Geng.

Algebra Level 3

A sequence { x n } \{x_n\} satisfies the recurrent relation below:

{ x 0 = 1 x n = 225 n ( x 0 + x 1 + x 2 + . . . + x n 1 ) for n 1 \large \begin{cases} x_0 =1 \\ x_n = -\dfrac{225}{n} (x_0 +x_1 +x_2 + ... +x_{n-1}) & \text{for } n \ge 1 \end{cases}

Find the value of x 0 + 2 x 1 + 2 2 x 2 + 2 3 x 3 + . . . + 2 225 x 225 x_0 +2x_1 +2^2 x_2 +2^3 x_3 + ... +2^{225} x_{225} .

1 2 -1 -2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 23, 2017

The first few x n x_n indicate the probable claim that x n = ( 1 ) n ( 225 n ) \displaystyle x_n = (-1)^n{225 \choose n} . Let us proof by induction that the claim is true by n 0 n \ge 0 .

Proof:

For n = 0 n=0 , x 0 = ( 1 ) 0 ( 225 0 ) = 1 \displaystyle x_0 = (-1)^0{225 \choose 0} = 1 , which is as given. Therefore, the claim is true for n = 0 n=0 .

Assuming the claim is true for n n , then we have:

x n + 1 = 225 n + 1 k = 0 n x k = 225 n + 1 ( k = 0 n 1 x k + x n ) = n n + 1 x n 225 n + 1 x n = n 225 n + 1 x n Note that x n = ( 1 ) n ( 225 n ) = n 225 n + 1 × ( 1 ) n ( 225 n ) = ( 1 ) n + 1 × 225 n n + 1 × 225 ! n ! ( 225 n ) ! = ( 1 ) n + 1 ( 225 n + 1 ) \begin{aligned} x_{\color{#D61F06}n+1} & = - \frac {225}{n+1} \sum_{k=0}^n x_k \\ & = - \frac {225}{n+1} \left(\sum_{k=0}^{n-1} x_k + x_n \right) \\ & = \frac n{n+1} x_n - \frac {225}{n+1} x_n \\ & = \frac {n-225}{n+1} \color{#3D99F6} x_n & \small \color{#3D99F6} \text{Note that } x_n = (-1)^n{225 \choose n} \\ & = \frac {n-225}{n+1} \times \color{#3D99F6} (-1)^n{225 \choose n} \\ & = (-1)^{n+1} \times \frac {225-n}{n+1} \times \frac {225!}{n!(225-n)!} \\ & = (-1)^{\color{#D61F06}n+1}{225 \choose {\color{#D61F06}n+1}} \end{aligned}

Therefore, the claim is also true for n + 1 n+1 and it is true for all n 0 n \ge 0 . \square

Then, we have:

X = x 0 + 2 x 1 + 2 2 x 2 + + 2 225 x 225 = k = 0 225 2 k x k = k = 0 225 ( 1 ) k ( 225 k ) 2 k Note that ( 1 u ) n = k = 0 n ( 1 ) k ( n k ) u k = ( 1 2 ) 225 = 1 \begin{aligned} X & = x_0 + 2x_1 + 2^2x_2 + \cdots + 2^{225}x_{225} \\ & = \sum_{k=0}^{225} 2^k x_k \\ & = \sum_{k=0}^{225} (-1)^k{225 \choose k}2^k & \small \color{#3D99F6} \text{Note that } (1-u)^n = \sum_{k=0}^n (-1)^k{n \choose k}u^k \\ & = (1-2)^{225} \\ & = \boxed{-1} \end{aligned}

Yes , you get it!

Kelvin Hong - 3 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...