330 followers problem-2

Calculus Level 3

Let I a = 0 π x 1 + a sin 2 x d x . I_a=\int^{\pi}_0\frac{x}{1+a\sin^2x}\ dx. If I 8 = ζ ( n ) I_8=\zeta(n) , find the value of n n .


Note: ζ ( k ) \zeta(k) is the Riemann Zeta Function .

Bonus: Evaluate I a I_a in terms of a a .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 24, 2016

I ( a ) = 0 π x 1 + a sin 2 x d x Using a b f ( x ) d x = a b f ( a + b x ) d x = 1 2 0 π x 1 + a sin 2 x + π x 1 + a sin 2 ( π x ) d x Note that sin ( π x ) = sin x = 1 2 0 π π 1 + a sin 2 x d x As the integrand is symmetrical on x = π 2 = π 0 π 2 1 1 + a sin 2 x d x Multiply up and down by sec 2 x = π 0 π 2 sec 2 x sec 2 x + a tan 2 x d x = π 0 π 2 sec 2 x 1 + ( 1 + a ) tan 2 x d x Let t = tan x , d t = sec 2 x d x = π 0 d t 1 + ( 1 + a ) t 2 Let u = 1 + a t , d u = 1 + a d t = π 1 + a 0 d u 1 + u 2 = π tan 1 u 1 + a 0 = π 2 2 1 + a \begin{aligned} I(a) & = \int_0^\pi \frac x{1+a\sin^2 x}dx & \small {\color{#3D99F6}\text{Using }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx} \\ & = \frac 12 \int_0^\pi \frac x{1+a\sin^2 x} + \frac {\pi -x}{1+a \ {\color{#3D99F6}\sin^2(\pi - x)}} dx & \small {\color{#3D99F6}\text{Note that }\sin (\pi-x) = \sin x} \\ & = \frac 12 \int_0^\pi \frac \pi{1+a\sin^2 x} dx & \small {\color{#3D99F6}\text{As the integrand is symmetrical on } x = \frac \pi 2} \\ & = \pi \int_0^\frac \pi 2 \frac 1{1+a\sin^2 x} dx & \small {\color{#3D99F6}\text{Multiply up and down by } \sec^2 x} \\ & = \pi \int_0^\frac \pi 2 \frac {\sec^2 x}{\sec^2 x +a\tan^2 x} dx \\ & = \pi \int_0^\frac \pi 2 \frac {\sec^2 x}{1+(1 +a) \tan^2 x} dx & \small {\color{#3D99F6}\text{Let } t = \tan x, \ dt = \sec^2 x \ dx} \\ & = \pi \int_0^\infty \frac {dt}{1+(1 +a) t^2} & \small {\color{#3D99F6}\text{Let } u = \sqrt{1+a}\ t, \ du = \sqrt{1+a}\ dt} \\ & = \frac \pi{ \sqrt{1+a}} \int_0^\infty \frac {du}{1+u^2} \\ & = \frac {\pi \tan^{-1} u}{ \sqrt{1+a}} \bigg|_0^\infty \\ & = \frac {\pi^2}{2\sqrt{1+a}} \end{aligned}

I ( 8 ) = π 2 2 1 + 8 = π 2 6 = ζ ( 2 ) k = 2 \implies I(8) = \dfrac {\pi^2}{2\sqrt{1+8}} = \dfrac {\pi^2}6 = \zeta (2) \implies k = \boxed{2}

Line 2: there is a missing variable, it should be π x 1 + a sin 2 ( π x ) \frac{\pi-x}{1+{\color{#D61F06}{a}}\sin^2(\pi-x)} .

敬全 钟 - 4 years, 7 months ago

Log in to reply

Thanks. Added it in.

Chew-Seong Cheong - 4 years, 7 months ago

With some basic applications it can be derived that I a = π 0 π 2 d x 1 + a sin 2 x = π 0 π 2 sec 2 x d x 1 + tan 2 x ( 1 + a ) = π 0 d t 1 + t 2 ( 1 + a ) = π 2 2 1 + a \displaystyle I_a =\pi\int_{0}^{\frac{\pi}{2}}\frac{dx}{1+a\sin^2 x} =\pi\int_{0}^{\frac{\pi}{2}} \frac{\sec^2 x dx}{1+\tan^2 x(1+a)} = \pi\int_{0}^{\infty}\frac{dt}{1+t^2(1+a)} = \frac{\pi^2}{2\sqrt{1+a}}

Thus , I 8 = ζ ( 2 ) I_8=\zeta(2)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...