330 followers problem-1

Calculus Level 5

k = 0 ( 7 8 ) k ( 1 8 ) k ( 2 k + 1 k ) \sum^{\infty}_{k=0}\left(\frac{7}{8}\right)^k\left(\frac{1}{8}\right)^k{2k+1\choose k}

If the sum above can be written as A B \dfrac{A}{B} where A A and B B are positive coprime integers, find the value of A + B A+B .


The answer is 53.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let S = k = 0 ( 2 k + 1 k ) x k = k = 0 ( 2 k k ) x k ( 2 k + 1 k + 1 ) = k = 0 ( 1 1 k + 1 ) ( 2 k k ) x k \displaystyle S=\sum_{k=0}^{\infty} \binom{2k+1}{k}x^k = \sum_{k=0}^{\infty} \binom{2k}{k}x^k (\frac{2k+1}{k+1}) = \sum_{k=0}^{\infty}(1-\frac{1}{k+1})\binom{2k}{k}x^k

So we may write S = k 0 ( 2 k k ) x k Central Binomial Generating Function k 0 1 k + 1 ( 2 k k ) x k Catalan Numbers = 1 1 4 x 1 1 4 x 2 x \displaystyle S = \underbrace{\color{#D61F06}{\sum_{k\ge 0}\binom{2k}{k}x^k}}_{\text{Central Binomial Generating Function}} - \underbrace{\color{#3D99F6}{\sum_{k\ge 0} \frac{1}{k+1}\binom{2k}{k}x^k}}_{\text{Catalan Numbers}} = \color{#333333}{\frac{1}{\sqrt{1-4x}} - \frac{1-\sqrt{1-4x}}{2x}}

Putting x = 7 64 \displaystyle x=\frac{7}{64} we get, S = 32 21 \displaystyle S=\boxed{\frac{32}{21}}

Evaluation of : n 0 1 n + 1 ( 2 n n ) x n \text{Evaluation of : }\color{#3D99F6}{\displaystyle \sum_{n\ge 0}\frac{1}{n+1}\binom{2n}{n}x^n}

The Catalan Numbers satisfy the recurrence relation C n = k = 0 n 1 C k C n k 1 \displaystyle C_n = \sum_{k=0}^{n-1}C_k C_{n-k-1}

Let A ( x ) = n 0 C n x n = n 0 k = 0 n 1 C k C n k 1 x n = 1 + n 1 k = 0 n 1 C k C n k 1 x n = 1 + x n 0 k = 0 n C k C n k 1 x n \displaystyle A(x)=\sum_{n\ge 0}C_n x^n = \sum_{n\ge 0}\sum_{k=0}^{n-1}C_k C_{n-k-1} x^n = 1+ \sum_{n\ge 1}\sum_{k=0}^{n-1}C_k C_{n-k-1} x^n=1+ x\sum_{n\ge 0}\sum_{k=0}^{n}C_k C_{n-k-1} x^n

Now by Cauchy product we know ( A ( x ) ) 2 = ( n 0 C n x n ) ( n 0 C n x n ) = n 0 k = 0 n C k C n k x n \displaystyle (A(x))^2 = (\sum_{n\ge 0}C_n x^n)(\sum_{n\ge 0}C_n x^n) = \sum_{n\ge 0}\sum_{k=0}^{n}C_k C_{n-k}x^n

Therefore, A ( x ) = 1 + x ( A ( x ) ) 2 \displaystyle A(x)=1+x(A(x))^2 and solving the quadratic we have A ( x ) = n 0 1 n + 1 ( 2 n n ) x n = 1 1 4 x 2 x \displaystyle A(x) =\sum_{n\ge 0}\frac{1}{n+1}\binom{2n}{n}x^n =\frac{1-\sqrt{1-4x}}{2x}

The Red sum can be obtained by differentiating this sum.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...