0. A number theory problem by Sompong Chuisurichy

Let a , b , c a,b,c be positive integers satisfying 2 a + 2 b + 2 c = 33554466 2^a+2^b+2^c=33554466 . Find a + b + c a+b+c .


The answer is 31.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Wesley Zumino
Aug 7, 2017

We seek a , b , c Z > a, b, c \in \mathbb{Z}_{\gt} such that 2 a + 2 b + 2 c = 33554466 2^a + 2^b + 2^c = 33554466 . Without loss of generality, assume a b c a \le b \le c . After factoring out 2 a 2^a and observing that 33554466 = 2 3 3 621379 33554466 = 2 \cdot 3^3 \cdot 621379 , this equation becomes ( ) 2 a ( 1 + 2 b a + 2 c a ) = 2 3 3 621379 . (*) \qquad 2^a (1 + 2^{b-a} + 2^{c-a}) = 2 \cdot 3^3 \cdot 621379 \; . There are two possibilities: a < b a \lt b or a = b a = b .

a = b : \underline{\boldsymbol{ a = b :}} When a = b a = b , then ( ) (*) reduces to: 2 a + 1 ( 1 + 2 c a 1 ) = 2 3 3 621379 . 2^{a+1}(1 + 2^{c-a-1}) = 2 \cdot 3^3 \cdot 621379 \; . By assumption, c a c\ge a . If c = a c=a , then this means 2 a 3 = 2 3 3 621379 2^a \cdot 3 = 2 \cdot 3^3 \cdot 621379 , which is not possible for any a Z > a \in \mathbb{Z}_{\gt} . If c = a + 1 c=a+1 , then 2 a + 2 = 2 3 3 621379 2^{a+2} = 2 \cdot 3^3 \cdot 621379 , which again is not possible. If c > a + 1 c > a+1 , then 1 + 2 c a 1 1 + 2^{c-a-1} is odd, so 2 a + 1 = 2 a = 0 2^{a+1} = 2 \Rightarrow a = 0 , which is contrary to the given positivity of a a . Therefore, a b a \ne b .

a < b : \underline {\boldsymbol{ a < b :}} When a < b a < b , then the factor 1 + 2 b a + 2 c a 1 + 2^{b-a} + 2^{c-a} in ( ) (*) is odd for any a , b , c Z > a, b, c \in \mathbb{Z}_{\gt} when a < b c 2 a = 2 a = 1 . a<b \le c \Rightarrow 2^a = 2 \Rightarrow \boldsymbol{a = 1}. Using this value of a a in ( ) (*) and simplifying and then factoring out 2 b 1 2^{b-1} gives:

( ) 2 b 1 ( 1 + 2 c b ) = 3 3 621379 1 = 16777232 = 2 4 1048577 . (**) \qquad 2^{b-1} (1 + 2^{c-b}) = 3^3 \cdot 621379 - 1 = 16777232 = 2^4 \cdot 1048577 \; .

There are two possibilities: b < c b < c or b = c b = c . If b = c b = c , then ( ) (**) reduces to 2 b = 2 4 1048577 2^b = 2^4 \cdot 1048577 , which is not possible for any b Z > b \in \mathbb{Z}_{\gt} . Therefore, b < c b < c . Then the factor 1 + 2 c b 1 + 2^{c-b} is odd for any b , c Z > b, c \in \mathbb{Z}_{\gt} when b < c 2 b 1 = 2 4 b = 5 b<c \Rightarrow 2^{b-1} = 2^4 \Rightarrow \boldsymbol{b = 5} . Using this value of b b in ( ) (**) yields

1 + 2 c 5 = 1048577 2 c 5 = 1048577 1 = 1048576 = 2 20 c = 25 . 1 + 2^{c-5} = 1048577 \Rightarrow 2^{c-5} = 1048577-1 = 1048576 = 2^{20} \Rightarrow \boldsymbol{c=25} \; .

Therefore, a + b + c = 1 + 5 + 25 = 31 a + b + c = 1 + 5 + 25 = \boxed{31} .

By construction, this solution is unique up to permutations in the ordering of a , b , a, b, and c c .

Aaaaa Bbbbb
Mar 9, 2015

It isn't reduced generalization to assume that: a b c a \le b \le c So: 2 a + 2 b + 2 c = 2 a ( 1 + 2 b a + 2 c a ) = 33554466 2^a+2^b+2^c=2^a(1+2^{b-a}+2^{c-a})=33554466 a = 1 \Rightarrow a=1 2 b a + 2 c a = 2 b a ( 1 + 2 c b ) 2^{b-a}+2^{c-a}=2^{b-a}(1+2^{c-b}) b a = 4 , c b = 20 \Rightarrow b-a=4, c-b=20 b = 5 , c = 25 , a + b + c = 31 b=5, c=25, a+b+c=\boxed{31}

I never understood how you came to know

b a = 4 b-a = 4

and c b = 20 c-b=20

C a n Can y o u you p l e a s e please e x p l a i n explain i t it t o to m e ! ! ! ! ! ! ! ! ! ! ! ! me!!!!!!!!!!!!

Abhisek Mohanty - 6 years, 2 months ago

Log in to reply

I posted my solution to this which addresses your question, if you're still interested.

Wesley Zumino - 3 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...