#35 Measure Your Calibre

Calculus Level 4

Let α , β R \alpha , \beta \in \mathbb R be such that lim x 0 x 2 sin ( β x ) α x sin x = 1 \displaystyle{\lim_{x \rightarrow 0} \dfrac{x^2 \sin(\beta x)}{\alpha x - \sin x} = 1} . Then 6 ( α + β ) + 2 = ? 6(\alpha + \beta)+2= ?


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rishabh Jain
Apr 15, 2017

Write it(L) as: L = β lim x 0 x 3 × sin ( β x ) β x 1 α x sin x ( 0 0 ) L= \beta \cdot \displaystyle{\lim_{x \rightarrow 0} \dfrac{x^3 \times \overbrace{\color{#D61F06}{\frac{\sin(\beta x)}{\beta x}}}^1}{\alpha x - \sin x}}~~\left(\small{\frac 00 }\right) Apply Lhopital rule: L = β lim x 0 3 x 2 α cos x L=\beta\cdot \displaystyle{\lim_{x \rightarrow 0} \dfrac{3x^2 }{\alpha - \cos x}} Since numerator is tending to zero, for limit to be 1 ( 0 ) 1(\ne 0) , denominator must also tend to zero i.e α = 1 \color{#20A900}{\alpha=1} . Then :

L = 3 β lim x 0 1 1 cos x x 2 0.5 = 6 β = 1 L=3\beta\cdot\displaystyle{\lim_{x \rightarrow 0} \dfrac{1}{\underbrace{\color{#D61F06}{\dfrac{1 - \cos x}{x^2}}}_{0.5}}}=6\beta=1 β = 1 6 \implies \color{#20A900}{\beta=\dfrac 16}

6 ( α + β ) + 2 = 9 \therefore 6(\alpha+\beta)+2=\boxed{9}

Best solution of all 3, I guess, I mean , its easier than applying series.

Md Zuhair - 4 years, 1 month ago

Using Taylor expansion : sin x = n = 0 x 2 n + 1 ( 1 ) n ( 2 n + 1 ) ! \displaystyle \sin x=\sum\limits_{n=0}^{\infty}\dfrac{x^{2n+1}(-1)^n}{(2n+1)!}

L = lim x 0 x 2 sin β x α x sin x = lim x 0 x 2 ( β x β 3 x 3 3 ! + ) α x ( x x 3 3 ! + ) = lim x 0 β β 3 x 2 3 ! + α 1 x 2 + 1 3 ! + \displaystyle \begin{aligned} L&=\lim_{x\to 0}\dfrac{x^2\sin \beta x}{\alpha x-\sin x} \\&=\lim_{x\to 0} \dfrac{x^2\left(\beta x-\dfrac{\beta^3 x^3}{3!}+\cdots\right)}{\alpha x-\left(x-\dfrac{x^3}{3!}+\cdots\right)} \\ &= \lim_{x\to 0}\dfrac{\beta-\dfrac{\beta^3 x^2}{3!}+\cdots}{\dfrac{\alpha-1}{x^2}+\dfrac{1}{3!}+\cdots} \\ \end{aligned}

This forces α = 1 \displaystyle \alpha=1 ,

L = lim x 0 β 1 3 ! = 1 \displaystyle \begin{aligned} L&=\lim_{x\to 0} \dfrac{\beta}{\dfrac{1}{3!}}=1\end{aligned}

Thus β = 1 6 \beta=\dfrac{1}{6} making the answer 6 ( α + β ) + 2 = 9 \boxed{6(\alpha+\beta)+2=9}

Can you make an alternative in this solution only with L'Hospital's Rule?

Md Zuhair - 4 years, 1 month ago

Log in to reply

L-Hopital would be difficult to apply here, some limits are traditionally made to be solved by series

Aditya Narayan Sharma - 4 years, 1 month ago
Chew-Seong Cheong
Apr 15, 2017

Relevant wiki: Maclaurin Series

L = lim x 0 x 2 sin ( β x ) α x sin x Using Maclaurin series = lim x 0 x 2 ( β x ( β x ) 3 3 ! + ( β x ) 5 5 ! ( β x ) 7 7 ! + . . . ) α x ( x x 3 3 ! + x 5 5 ! x 7 7 ! + . . . ) = lim x 0 β x 3 β 3 x 5 3 ! + β 5 x 7 5 ! β 7 x 9 7 ! + . . . α x x + x 3 3 ! x 5 5 ! + x 7 7 ! + . . . Putting α = 1 = lim x 0 β x 3 β 3 x 5 3 ! + β 5 x 7 5 ! β 7 x 9 7 ! + . . . 0 + x 3 3 ! x 5 5 ! + x 7 7 ! + . . . Dividing up and down by x 3 = lim x 0 β β 3 x 2 3 ! + β 5 x 4 5 ! β 7 x 6 7 ! + . . . 1 3 ! x 2 5 ! + x 4 7 ! + . . . = 6 β \begin{aligned} L & = \lim_{x \to 0} \frac {x^2 \color{#3D99F6} \sin (\beta x)}{\alpha x - \color{#3D99F6} \sin x} & \small \color{#3D99F6} \text{Using Maclaurin series} \\ & = \lim_{x \to 0} \frac {x^2 \color{#3D99F6} \left(\beta x - \frac {(\beta x)^3}{3!} + \frac {(\beta x)^5}{5!} - \frac {(\beta x)^7}{7!} + ... \right)}{\alpha x - \color{#3D99F6} \left(x - \frac {x^3}{3!} + \frac {x^5}{5!} - \frac {x^7}{7!} + ... \right)} \\ & = \lim_{x \to 0} \frac {\beta x^3 - \frac {\beta^3 x^5}{3!} + \frac {\beta^5 x^7}{5!} - \frac {\beta^7 x^9}{7!} + ...}{{\color{#3D99F6}\alpha} x - x + \frac {x^3}{3!} - \frac {x^5}{5!} + \frac {x^7}{7!} + ...} & \small \color{#3D99F6} \text{Putting }\alpha = 1 \\ & = \lim_{x \to 0} \frac {\beta x^3 - \frac {\beta^3 x^5}{3!} + \frac {\beta^5 x^7}{5!} - \frac {\beta^7 x^9}{7!} + ...}{0+ \frac {x^3}{3!} - \frac {x^5}{5!} + \frac {x^7}{7!} + ...} & \small \color{#3D99F6} \text{Dividing up and down by }x^3 \\ & = \lim_{x \to 0} \frac {\beta - \frac {\beta^3 x^2}{3!} + \frac {\beta^5 x^4}{5!} - \frac {\beta^7 x^6}{7!} + ...}{\frac 1{3!} - \frac {x^2}{5!} + \frac {x^4}{7!} + ...} \\ & = 6 \beta \end{aligned}

Since L = 1 L = 1 , β = 1 6 \implies \beta = \dfrac 16 , 6 ( α + β ) + 2 = 6 ( 1 + 1 6 ) + 2 = 9 \implies 6(\alpha + \beta) + 2 = 6\left(1+\dfrac 16 \right) + 2 = \boxed{9}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...