L = a → 0 + lim ⎣ ⎢ ⎡ n = 0 ∑ ∞ ( 2 n + 1 ) e ( 2 n + 1 ) a ( 2 n + 1 ) a 2 + ( − 1 ) n ⎦ ⎥ ⎤
If L can be expressed as B A π C for positive integers A , B , C such that g cd ( A , B ) = 1 , then find the value of A + B + C .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
You can even take the limit inside summation sign(that must be valid under some convergence theorem of which I forgot the name).
Problem Loading...
Note Loading...
Set Loading...
Let f ( a ) = [ n = 0 ∑ ∞ ( 2 n + 1 ) e ( 2 n + 1 ) a ( 2 n + 1 ) a 2 + ( − 1 ) n ] .
Then f ( a ) = a 2 ( e − a + e − 3 a + − 5 a + … ) + ( e − a − 3 1 e − 3 a + 5 1 e − 5 a − … )
Since e − a < 1 , we can sum the series to get:
\DeclareMathOperator \csch c s c h f ( a ) = a 2 ( 1 − e − 2 a e − a ) + tan − 1 ( e − a ) = 2 1 a 2 \csch ( a ) + tan − 1 ( e − a )
Then:
\DeclareMathOperator \csch c s c h f ′ ( a ) = a \csch ( a ) − 2 1 a 2 \csch ( a ) coth ( a ) − 1 + e − 2 a e − a \DeclareMathOperator \sech s e c h = a coth ( a ) \sech ( a ) − 2 1 a 2 \sech ( a ) coth 2 ( a ) − 2 1 \sech ( a ) \DeclareMathOperator \sech s e c h = − [ 2 1 \sech ( a ) ] ( a 2 coth 2 ( a ) − 2 a coth ( a ) + 1 ) = − [ 2 1 \sech ( a ) ] ( a coth ( a ) − 1 ) 2 < 0
Hence f is strictly decreasing on ( 0 , ∞ ) . Using L'Hopital Rule, we get:
a → 0 + lim f ( a ) = a → 0 + lim ( e a + e − a 2 a ) + tan − 1 ( 1 ) = 4 π
So, A = 1 , B = 4 , C = 1 , A + B + C = 6 . Also f ( a ) < 4 π for a > 0 .