Limit of an infinite Summation!

Calculus Level 5

L = lim a 0 + [ n = 0 ( 2 n + 1 ) a 2 + ( 1 ) n ( 2 n + 1 ) e ( 2 n + 1 ) a ] \Large{ L = \lim_{a \to 0^+} \left[ \sum_{n=0}^\infty \dfrac{(2n+1)a^2 + (-1)^n}{(2n+1)e^{(2n+1)a}} \right]}

If L L can be expressed as A B π C \dfrac{A}{B} \pi^C for positive integers A , B , C A,B,C such that gcd ( A , B ) = 1 \gcd(A,B) = 1 , then find the value of A + B + C A+B+C .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Satyajit Mohanty
Sep 12, 2015

Let f ( a ) = [ n = 0 ( 2 n + 1 ) a 2 + ( 1 ) n ( 2 n + 1 ) e ( 2 n + 1 ) a ] f(a) = \left[ \displaystyle \sum_{n=0}^\infty \dfrac{(2n+1)a^2 + (-1)^n}{(2n+1)e^{(2n+1)a}} \right] .

Then f ( a ) = a 2 ( e a + e 3 a + 5 a + ) + ( e a 1 3 e 3 a + 1 5 e 5 a ) f(a) = a^2(e^{-a} + e^{-3a} + ^{-5a} + \ldots) + \left(e^{-a} -\dfrac13 e^{-3a} + \dfrac15 e^{-5a} - \ldots \right)

Since e a < 1 e^{-a} < 1 , we can sum the series to get:

\DeclareMathOperator \csch c s c h f ( a ) = a 2 ( e a 1 e 2 a ) + tan 1 ( e a ) = 1 2 a 2 \csch ( a ) + tan 1 ( e a ) \DeclareMathOperator{\csch}{csch} f(a) = a^2 \left( \dfrac{e^{-a}}{1-e^{-2a}} \right) + \tan^{-1} (e^{-a}) = \dfrac12 a^2 \csch (a) + \tan^{-1}(e^{-a})

Then:

\DeclareMathOperator \csch c s c h f ( a ) = a \csch ( a ) 1 2 a 2 \csch ( a ) coth ( a ) e a 1 + e 2 a \DeclareMathOperator{\csch}{csch} f'(a) = a \csch (a) - \dfrac12 a^2 \csch (a) \coth (a) - \dfrac{e^{-a}}{1+e^{-2a}} \DeclareMathOperator \sech s e c h = a coth ( a ) \sech ( a ) 1 2 a 2 \sech ( a ) coth 2 ( a ) 1 2 \sech ( a ) \DeclareMathOperator{\sech}{sech} = a \coth (a) \sech (a) - \dfrac12 a^2 \sech (a) \coth^2 (a) - \dfrac12 \sech (a) \DeclareMathOperator \sech s e c h = [ 1 2 \sech ( a ) ] ( a 2 coth 2 ( a ) 2 a coth ( a ) + 1 ) = [ 1 2 \sech ( a ) ] ( a coth ( a ) 1 ) 2 < 0 \DeclareMathOperator{\sech}{sech} = - \left[\dfrac12 \sech (a) \right] (a^2 \coth^2 (a) - 2a \coth (a) + 1) = - \left[\dfrac12 \sech (a) \right](a \coth (a) - 1)^2 < 0

Hence f f is strictly decreasing on ( 0 , ) (0, \infty) . Using L'Hopital Rule, we get:

lim a 0 + f ( a ) = lim a 0 + ( 2 a e a + e a ) + tan 1 ( 1 ) = π 4 \displaystyle \lim_{a \to 0^+} f(a) = \lim_{a \to 0^+} \left( \dfrac{2a}{e^a + e^{-a}} \right) + \tan^{-1}(1) = \dfrac{\pi}{4}

So, A = 1 , B = 4 , C = 1 , A + B + C = 6 A=1, B=4, C=1, A+B+C = \boxed{6} . Also f ( a ) < π 4 f(a) < \dfrac{\pi}{4} for a > 0 a>0 .

You can even take the limit inside summation sign(that must be valid under some convergence theorem of which I forgot the name).

Kartik Sharma - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...