350 Followers problem- Trigo bash-1

Geometry Level 5

2 ( cos θ + cos 2 θ ) + sin 2 θ ( 1 + 2 cos θ ) = 2 sin θ \large 2(\cos\theta+\cos2\theta)+\sin2\theta(1+2\cos\theta)=2\sin\theta

How many solutions are there to the equation above for θ [ π , π ] \theta \in [-\pi, \pi] ?

3 4 6 5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I'm replacing θ \theta with x x due to keyboard difficulties xD.

2 ( cos x + cos 2 x ) + sin 2 x ( 1 + 2 cos x ) = 2 sin x 2\left(\cos x+\cos2x\right)+\sin2x\left(1+2\cos x\right)=2\sin x

2 ( cos x + cos 2 x ) + 2 sin x ( 2 cos 2 x + cos x 1 ) = 0 2\left(\cos x+\cos2x\right)+2\sin x\left(2\cos^2x+\cos x-1\right)=0

2 ( 2 cos 2 x + cos x 1 ) + 2 sin x ( 2 cos 2 x + cos x 1 ) = 0 2\left(2\cos^2x+\cos x-1\right)+2\sin x\left(2\cos^2x+\cos x-1\right)=0

2 ( 1 + sin x ) ( 2 cos x 1 ) ( cos x + 1 ) = 0 2\left(1+\sin x\right)\left(2\cos x-1\right)\left(\cos x+1\right)=0

From the left term we get x = π 2 x = -\frac{\pi}{2}

From the middle term, we get x = π 3 , π 3 x = \frac{\pi}{3},-\frac{\pi}{3}

From the right term, we get x = π , π x = -\pi,\pi

Ignoring x = π 2 x = -\frac{\pi}{2} , we have 4 4 solutions.

Please explain why you ignore x= π 2 \dfrac \pi 2 .

Niranjan Khanderia - 2 years, 9 months ago

Log in to reply

In the previous version of the question, we were asked to do so.

Arkajyoti Banerjee - 2 years, 9 months ago

Tedious but satisfying. Here we go!

2 ( cos θ + cos 2 θ ) + sin 2 θ ( 1 + 2 cos θ ) = 2 sin θ 2(\cos\theta+\cos2\theta)+\sin2\theta(1+2\cos\theta)=2\sin\theta

(Apply double-angle identities.)

2 ( cos θ + cos 2 θ sin 2 θ ) + 2 sin θ cos θ ( 1 + 2 cos θ ) = 2 sin θ 2(\cos\theta+\cos^{2}\theta-\sin^{2}\theta)+2\sin\theta\cos\theta(1+2\cos\theta)=2\sin\theta

(Divide by 2,distribute, subtract sin θ \sin\theta from both sides.)

cos θ + 2 cos 2 θ 1 + sin θ cos θ + 2 sin θ cos 2 θ sin θ = 0 \cos\theta+2\cos^{2}\theta-1+\sin\theta\cos\theta+2\sin\theta\cos^{2}\theta-\sin\theta=0

(Group terms in a convenient way.)

( 2 cos 2 θ + cos θ 1 ) + sin θ ( 2 cos 2 θ + cos θ 1 ) = 0 (2\cos^{2}\theta+\cos\theta-1)+\sin\theta(2\cos^{2}\theta+\cos\theta-1)=0

(Substitute with x x .)

x + x sin θ = 0 x+x\sin\theta=0

x ( 1 + sin θ ) = 0 x(1+\sin\theta)=0

(We see that π 2 -\frac{\pi}{2} is a solution).

Now replace cos θ \cos\theta with x x :

2 x 2 + x 1 = 0 2x^{2}+x-1=0

(After solving we get x = 1 , 1 2 x=-1,\frac{1}{2} )

cos θ = 1 , 1 2 \cos\theta=-1,\frac{1}{2}

θ = π 2 , π , π , π 3 , π 3 \theta= \frac{-\pi}{2}, -\pi, \pi, \frac{-\pi}{3}, \frac{\pi}{3}

So, the answer is 5 \boxed{5} .

Answer is 5 \boxed{5} . Please update your solution.

Nishant Sharma - 2 years, 11 months ago

Log in to reply

There you go

A Former Brilliant Member - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...