350 followers problem

Calculus Level 3

n = 1 ϕ ( n ) n 3 \sum^{\infty}_{n=1}\frac{\phi(n)}{n^3}

If the sum above can be expressed as π a b ζ ( c ) \dfrac{\pi^a}{b\zeta(c)} where a , b , c a,b,c are positive integers, input your answer as a × b × c . a\times b\times c.


Notation: ϕ ( n ) \phi(n) is the Euler's totient function and ζ ( n ) \zeta(n) is the Riemann Zeta function .

Bonus: Generalize the sum n = 1 ϕ ( n ) n k , \displaystyle\sum^{\infty}_{n=1}\frac{\phi(n)}{n^k}, where k k is a positive integer such that k 4. k\geq4.


The answer is 36.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

I've already solved it here , the solution goes as :

We have by Drichlet Convolution ( ϕ I ) ( n ) = n (\phi*I)(n) = n

I ( n ) I(n) Denotes the Identity Function .

P r o o f \mathbf{Proof }

( ϕ I ) ( n ) = d n ϕ ( d ) I ( n d ) = d n ϕ ( d ) = n (\displaystyle\phi*I)(n) = \sum_{d|n} \phi(d)I(\frac{n}{d}) = \sum_{d|n}\phi(d) = n

Of course it is a well known identity that d n ϕ ( d ) = n \text{Of course it is a well known identity that }\sum_{d|n}\phi(d) = n

Next we have :

n N ( f g ) ( n ) n s = n N f ( n ) n s n N g ( n ) n s \displaystyle\sum_{n\in\mathbb{N}} \frac{(f*g)(n)}{n^s} = \sum_{n\in\mathbb{N}} \frac{f(n)}{n^s} \sum_{n\in\mathbb{N}} \frac{g(n)}{n^s}

P r o o f \mathbf{Proof}

We may write the summation as :

n N ( f g ) ( n ) n s = n N n = d 1 d 2 f ( d 1 ) d 1 s f ( d 2 ) d 2 s \displaystyle\sum_{n\in\mathbb{N}} \frac{(f*g)(n)}{n^s}=\sum_{n\in\mathbb{N}} \sum_{n=d_1d_2} \frac{f(d_1)}{{d_1}^s}\frac{f(d_2)}{{d_2}^s}

Note that every ordered pair ( d 1 , d 2 ) (d_1,d_2) occurs exactly once namely n = d 1 d 2 n=d_1d_2

So the above summation can be rewritten as :

n N ( f g ) ( n ) n s = d 1 N f ( d 1 ) d 1 s d 1 N f ( d 2 ) d 2 s \displaystyle \sum_{n\in\mathbb{N}} \frac{(f*g)(n)}{n^s}=\sum_{d_1\in\mathbb{N}} \frac{f(d_1)}{{d_1}^s} \sum_{d_1\in\mathbb{N}} \frac{f(d_2)}{{d_2}^s}

Thus we have

n N ( f g ) ( n ) n s = n N f ( n ) n s n N g ( n ) n s \displaystyle \sum_{n\in\mathbb{N}} \frac{(f*g)(n)}{n^s} = \sum_{n\in\mathbb{N}} \frac{f(n)}{n^s} \sum_{n\in\mathbb{N}} \frac{g(n)}{n^s} .

Here : f ( n ) = ϕ ( n ) f(n)=\phi(n) & g ( n ) = I ( n ) g(n)=I(n)

n N ( ϕ I ) ( n ) n n s ζ ( s 1 ) = n N ϕ ( n ) n s n N I ( n ) 1 n s ζ ( s ) \displaystyle\sum_{n\in\mathbb{N}} \underbrace{\frac{\underbrace{(\phi*I)(n)}_{\text{n}}}{n^s}}_{\zeta(s-1)} = \sum_{n\in\mathbb{N}} \frac{\phi(n)}{n^s} \sum_{n\in\mathbb{N}} \underbrace{\frac{\underbrace{I(n)}_{\text{1}}}{n^s}}_{\zeta(s)}

n N ϕ ( n ) n s = ζ ( s 1 ) ζ ( s ) \displaystyle\implies \sum_{n\in\mathbb{N}} \frac{\phi(n)}{n^s} = \frac{\zeta(s-1)}{\zeta(s)}

This gives the sum n = 1 ϕ ( n ) n 3 = ζ ( 2 ) ζ ( 3 ) = π 2 6 ζ ( 3 ) \displaystyle \sum_{n=1}^\infty \frac{\phi(n)}{n^3}=\frac{\zeta(2)}{\zeta(3)}=\frac{\pi^2}{6\zeta(3)} making the answer 36 \boxed{36} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...