3 6 8 + 1 36^8+1

Algebra Level 2

For positive integers a a and b b that satisfy ( 36 + 1 ) ( 3 6 2 + 1 ) ( 3 6 4 + 1 ) ( 3 6 8 + 1 ) = 6 a 1 b , (36+1)(36 ^2+1)(36 ^4+1)(36^8+1)=\frac{6^a-1}{b}, what is the value of a + b ? a+b?

69 67 71 73

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Tunk-Fey Ariawan
Mar 1, 2014

Rewrite ( 36 + 1 ) ( 3 6 2 + 1 ) ( 3 6 4 + 1 ) ( 3 6 8 + 1 ) = ( 6 2 + 1 ) ( 6 4 + 1 ) ( 6 8 + 1 ) ( 6 16 + 1 ) = ( 6 4 1 ) ( 6 2 1 ) ( 6 8 1 ) ( 6 4 1 ) ( 6 16 1 ) ( 6 8 1 ) 6 32 1 6 16 1 = 6 32 1 ( 6 2 1 ) = ( 6 32 1 ) 35 . \begin{aligned} (36+1)(36^2+1)(36^4+1)(36^8+1)&=(6^2 + 1)(6^4 + 1)(6^8 + 1)(6^{16} + 1)\\ &=\frac{(6^4 - 1)}{(6^2 - 1)}\cdot\frac{(6^8 - 1)}{(6^4 - 1)}\cdot\frac{(6^{16} - 1)}{(6^8 - 1)}\cdot\frac{6^{32} - 1}{6^{16} - 1}\cdot\\ &=\frac{6^{32} - 1}{(6^2 - 1)}\\ &=\frac{(6^{32} - 1)}{35}. \end{aligned} Thus, a = 32 a=32 , b = 35 b=35 , and a + b = 67 a+b=\boxed{67} . # Q . E . D . # \text{\# }\mathbb{Q.E.D.}\text{ \#}

WOW!!! very interesting solution...

Datu Oen - 7 years, 2 months ago

thank u

Pratik Zaware - 7 years, 2 months ago

good solution

I did it by using gp series formula after multiplying it fully

Kartik Sharma - 7 years ago
Tan Li Xuan
Mar 1, 2014

We can use the equation ( a b ) ( a + b ) = a 2 b 2 (a-b)(a+b) = a^{2} - b^{2} .First,we multiply both sides by ( 36 1 ) = 35 (36-1)=35 to get

( 36 1 ) ( 36 + 1 ) ( 3 6 2 + 1 ) ( 3 6 4 + 1 ) ( 3 6 8 + 1 ) = 6 a 1 b × 35 (36-1)(36+1)(36^{2}+1)(36^{4}+1)(36^{8}+1) = \frac{6^{a}-1}{b} \times 35

By multiplying the terms on the left hand side,we get

( 3 6 2 1 ) ( 3 6 2 + 1 ) ( 3 6 4 + 1 ) ( 3 6 8 + 1 ) = 6 a 1 b × 35 (36^{2}-1)(36^{2}+1)(36^{4}+1)(36^{8}+1) = \frac{6^{a}-1}{b} \times 35

= ( 3 6 4 1 ) ( 3 6 4 + 1 ) ( 3 6 8 + 1 ) = 6 a 1 b × 35 = (36^{4}-1)(36^{4}+1)(36^{8}+1) = \frac{6^{a}-1}{b} \times 35

= ( 3 6 8 1 ) ( 3 6 8 + 1 ) = 6 a 1 b × 35 = (36^{8}-1)(36^{8}+1) = \frac{6^{a}-1}{b} \times 35

= 3 6 16 1 = 6 a 1 b × 35 = 36^{16}-1 = \frac{6^{a}-1}{b} \times 35

Because 36 = 6 2 36 = 6^{2} , 3 6 16 = ( 6 2 ) 16 36^{16} = (6^{2})^{16} which is equal to 6 32 6^{32} since ( 6 2 ) 16 (6^{2})^{16} is equal to 6 2 × 6 2 × 6 2 . . . . . . . . . 6^{2} \times 6^{2} \times 6^{2} ......... 16 times.So we have

6 32 1 = 6 a 1 b × 35 6^{32}-1 = \frac{6^{a}-1}{b} \times 35

The factors of 35 are 1,5,7 and 35.Because 6 32 1 6^{32}-1 is a positive integer , b b must be 1,5,7 or 35 for 6 a 1 b × 35 \frac{6^{a}-1}{b} \times 35 to be an integer.It is easy to observe that 6 a 1 b × 35 \frac{6^{a}-1}{b} \times 35 is an integer of the form 6 a 1 6^{a}-1 only if b = 35 b = 35 ,so we have 6 32 1 = 6 a 1 35 × 35 6^{32}-1 = \frac{6^{a}-1}{35} \times 35 .After cancelling out the 35, we can find that a = 32 a = 32 , so a + b = 32 + 35 = 67 a + b = 32 + 35 = 67 .

out standing thank u

Sivasai Vemuri - 7 years, 1 month ago

This can be written as (6^2 + 1) * (6^4 + 1) * (6^8 + 1) * (6^16 + 1) =

[(6^4 - 1)/(6^2 - 1)] * [(6^8 - 1)/(6^4 - 1)] * [(6^16 - 1)/(6^8 - 1)] * [(6^32 - 1)/(6^16 - 1)] =

(6^32 - 1) / (6^2 - 1) = (6^32 - 1) / 35. Thus a = 32, b = 35 and so a + b = 67.

Moshiur Mission
Mar 30, 2014

(36+1)(36^2+1)(36^4+1)(36^8+1)=(36^16-1)/(36-1)=(6^32-1)/35 hence a=32, b=35 & a+b=67

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...