3D Coordinate Geometry -1

Geometry Level 2

Find the value of k k such that ( x 4 ) = ( y 2 ) = z k 2 (x-4) = (y-2) = \dfrac {z-k}{2} lies in the plane 2 x 4 y + z = 7 2x-4y+z=7


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rishabh Jain
Mar 3, 2016

L ( x 4 ) = ( y 2 ) = z k 2 \large L\equiv (x-4) = (y-2) = \dfrac {z-k}{2} P 2 x 4 y + z = 7 \large P\equiv 2x-4y+z=7 ( 4 , 2 , k ) (4,2,k) is a point on the line L L and since whole line lies on plane P P , this point must also lie on P P . 2 ( 4 ) 4 ( 2 ) + 1 ( k ) = 7 \therefore \Large 2(4)-4(2)+1(k)=7 k = 7 \Large \implies k=\huge \boxed 7

Michael Fuller
Jul 29, 2016

x 4 1 = y 2 1 = z k 2 ( = μ ) r = ( 4 2 k ) + μ ( 1 1 2 ) 2 x 4 y + z = 7 r ( 2 4 1 ) = 7 \dfrac{x-4}{1}=\dfrac{y-2}{1}=\dfrac{z-k}{2} \, (=\mu) \, \Rightarrow \, \textbf{r} = \begin{pmatrix} 4 \\ 2 \\ k \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \\ 2x-4y+z=7 \, \Rightarrow \, \textbf{r} \cdot \begin{pmatrix} 2 \\ -4 \\ 1 \end{pmatrix} = 7 Substituting the line vector equation into the scalar product form of the plane, we get 8 + 2 μ 8 4 μ + k + 2 μ = 7 k = 7 8+2 \mu -8 -4 \mu +k+2 \mu = 7 \Rightarrow k=\large \color{#20A900}{\boxed{7}}

F o r a l i n e x x 1 a 1 = y y 1 b 1 = z z 1 c 1 L i e s i n t h e p l a n e a x + b y + c z = d a . a 1 + b . b 1 + c . c 1 = 0 A n d a . x 1 + b . y 1 + c . z 1 = d I n t h i s q u e s t i o n a 1 = b 1 = 1 a n d c 1 = 2 x 1 = 4 , y 1 = 2 , z 1 = k a = 2 , b = 4 , c = 1 , d = 7 n o w 2.4 + ( 4 ) . 2 + 1. k = 7 = > k = 7 For\quad a\quad line\quad \frac { x-{ x }_{ 1 } }{ { a }_{ 1 } } =\frac { y-{ y }_{ 1 } }{ { b }_{ 1 } } =\frac { z-{ z }_{ 1 } }{ { c }_{ 1 } } \\ Lies\quad in\quad the\quad plane\quad ax+by+cz=d\\ a{ .a }_{ 1 }+{ b.b }_{ 1 }+c.{ c }_{ 1 }=0\quad And\quad a{ .x }_{ 1 }+{ b.y }_{ 1 }+c.{ z }_{ 1 }=d\\ In\quad this\quad question\quad { a }_{ 1 }={ b }_{ 1 }=1\quad and\quad { c }_{ 1 }=2\\ { x }_{ 1 }{ =4,\quad y }_{ 1 }=2\quad ,\quad { z }_{ 1 }=k\quad a=2\quad ,\quad b=-4,\quad c=1,\quad d=7\\ now\quad 2.4+(-4).2+1.k=7\\ =>\quad k=7

Moderator note:

Can you explain how you arrived at the third line?

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...