3D glasses

Geometry Level 3

Let u \vec{u} and v \vec{v} be vectors in R n \mathbb{R}^n .

If u + v = 5 |\vec{u}+\vec{v}| = 5 and u v = 3 |\vec{u}-\vec{v}| = 3 , find u v \vec{u} \cdot \vec{v} .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Mar 14, 2016

4 u v = u + v 2 u v 2 = 16 4~\color{#D61F06}{\vec{u} \cdot \vec{v}}=|\vec{u}+\vec{v}|^2-|\vec{u}-\vec{v}|^2=16 u v = 16 4 = 4 \implies \color{#D61F06}{\vec{u} \cdot \vec{v}}=\dfrac{16}{4}=\boxed 4


u + v 2 = u + v u + v = u 2 + v u + u v + v 2 = v 2 + u 2 + 2 u v \begin{aligned}|\vec{u}+\vec{v}|^2=&|\vec{u}+\vec{v}|\cdot|\vec{u}+\vec{v}|\\&=|\vec u|^2+\vec{v}\cdot\vec{u}+\vec{u}\cdot\vec{v}+|\vec{v}|^2\\&=|\vec{v}|^2+|\vec{u}|^2+2~\color{#D61F06}{\vec{u} \cdot \vec{v}}\end{aligned} Similarly, u v 2 = u 2 + v 2 2 u v |\vec{u}-\vec{v}|^2=|\vec u|^2+|\vec v|^2-2~\vec u\cdot\vec v And hence, 4 u v = u + v 2 u v 2 4~\color{#D61F06}{\vec{u} \cdot \vec{v}}=|\vec{u}+\vec{v}|^2-|\vec{u}-\vec{v}|^2

Mind giving a proof of the identity for completeness's sake?

Jake Lai - 5 years, 3 months ago

Log in to reply

Done..............

Rishabh Jain - 5 years, 3 months ago
Arjen Vreugdenhil
Mar 17, 2016

If the system of equations u + v = 5 , u v = 3 u + v = 5,\ u - v = 3 has a solution in positive real numbers, then the vectors u = u n , v = v n \vec u = u\vec n,\ \vec v = v\vec n satisfy the equation, with n \vec n a unit vector; in that case u v = u v \vec u\cdot \vec v = uv .

So I solved the equations u + v = 5 , u v = 3 u + v = 5,\ u - v = 3 for real numbers and found u = 4 u = 4 and v = 1 v = 1 . Therefore the answer is u v = 4 u\cdot v = 4 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...