3rd Problem

Algebra Level 3

log 2 x 6 + log x 2 = 5 , x = ? \large \log_2 x^6 + \log_x 2 = 5, \ \ \ \ \ x = \ ?

2 3 \sqrt[3]{2} 2 \sqrt {2} 2 , 2 3 \sqrt 2, \sqrt[3]{2} No such value exist

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

log 2 x 6 + log x 2 = 5 6 log 2 x + 1 log 2 x = 5 \log _{ 2 }{ { x }^{ 6 } } +\log _{ x }{ 2 } =5\\ 6\log _{ 2 }{ { x } } +\frac { 1 }{ \log _{ 2 }{ x } } =5

multiplying both sides with log 2 x \log _{ 2 }{ x } give us

6 ( log 2 x ) 2 + 1 = 5 log 2 x 6 ( log 2 x ) 2 5 log 2 x + 1 = 0 ( 3 log 2 x 1 ) ( 2 log 2 x 1 ) = 0 log 2 x = 1 3 x = 2 3 log 2 x = 1 2 x = 2 6(\log _{ 2 }{ { x } })^2 +1=5\log _{ 2 }{ { x } } \\ 6(\log _{ 2 }{ { x } })^2 -5\log _{ 2 }{ { x } } +1=0\\ \left( 3\log _{ 2 }{ { x }-1 } \right) \left( 2\log _{ 2 }{ { x }-1 } \right) =0\\ \log _{ 2 }{ { x } } =\frac { 1 }{ 3 } \Rightarrow x=\sqrt [ 3 ]{ 2 } \\ \log _{ 2 }{ { x } } =\frac { 1 }{ 2 } \Rightarrow x=\sqrt { 2 }

sir,how could we change the base of log by taking inverse of log

Krishan Chandra Pandey - 6 years, 1 month ago

Log in to reply

remember this formula: log a b = log x b log x a \log _{ a }{ b } =\frac { \log _{ x }{ b } }{ \log _{ x }{ a } } subtutite x = b x=b we get log a b = log b b log b a = 1 log b a \log _{ a }{ b } =\frac { \log _{ b }{ b } }{ \log _{ b }{ a } } =\frac { 1 }{ \log _{ b }{ a } }

Muhammad Fairuzi Teguh - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...