Four centers problem

Geometry Level 4

In A B C \triangle ABC , the sides of triangles are A B = 15 AB = 15 , B C = 8 BC = 8 and C A = 17 CA =17 . Let I I be the in-center , H H be the orthocenter , G G be the centroid and O O be the circumcenter . If the area of I H G O IHGO is of the form a b \dfrac{a}{b} , where a a and b b are co-prime, find a + b a+b .


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

A B C i s a r i g h t Δ . L e t M b e t h e m i d p o i n t o f A C . o n c o o r d i n a t e p l a n e , l e t B ( 0 , 0 ) , A ( 0 , 15 ) , C ( 8 , 0 ) , M ( 4 , 7.5 ) . W e h a v e H G O ( i n t h a t o r d e r ) i s t h e E u l e r L i n e . q u a d r i l a t e r a l I H G O i s t h e d e g e n e r a t e d Δ I H O . W e k n o w f o r a r i g h t Δ , H = B , O = M , s o H O = B M = A C / 2 = 17 / 2. L i n e B M i s , 15 X 8 Y + 0 = 0. I n r a d i u s , r = A r e a s = 1 / 2 15 8 1 / 2 ( 15 + 8 + 17 ) = 3. S o I ( 3 , 3 ) . t h e d i s t a n c e f r o m I t o l i n e B M , p = 15 3 8 3 + 0 1 5 2 + 8 2 = 21 17 . t h e A r e a I H G O = A r e a I H O = 1 / 2 p H O = 1 / 2 21 / 17 17 / 2 = 21 / 4 = a / b . a + b = 21 + 4 = 25. ABC~ is~ a ~right~ \Delta.~ Let~ M ~be ~the~ midpoint~ of~ AC.\\ \therefore~ on~ co-ordinate~ plane,~ let~~ B(0,0),~ A(0,15),~ C(8,0),~ M(4,7.5).\\ We ~have~ HGO~ ~ (in~ that~ order)~~ is~ the ~Euler~ Line. \\ \therefore ~quadrilateral~ IHGO ~is ~the ~degenerated~\Delta~~ IHO.\\ We~ know~ for~ a ~right~\Delta ,~~ H=B,~~O=M,~~~ so~~ HO=BM=AC/2=17/2.\\ Line~ BM ~is,~~ 15X-8Y+0=0.\\ In~ radius,~ r=\dfrac{Area} s=\dfrac{1/2 * 15 * 8}{1/2(15+8+17)}=3.~~ So~~ I(3,3).\\ \therefore~ the~ \bot ~ distance~ from~ I~ to ~line~ BM,~~ p =\dfrac{15 * 3 - 8 * 3 + 0}{\sqrt{15^2+8^2}} = \dfrac {21}{17}. \\ \therefore~ the~ Area~ IHGO=Area~ IHO=1/2 *p* HO =1/2 * 21/17*17/2 =21/4=a/b.\\ \therefore~ a+b=21+4=\Large~~~~~ \color{#D61F06}{25}.

<> <>
Sep 23, 2017

Set the triangle to coordinate B (0,0) C (0,8) A (15,0) See H=B O is midpoint of AC so (15/2, 4) Note coordinate of I is (r,r) where r is in radius A=rs 60=20r r=3 so I =(3,3) G is a little tricky lets choose the B median which has equation y=8x/15 Now we see midpoint of AC is (0,4) take with A (15,0) gives equation for A median as y=-4x.15+4 solve for two intersections of median we get (5, 8/3) Now shoe lace to get 21/4 -> 25

Ahmad Saad
Sep 3, 2017

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...