4 Circles in a Triangle

Geometry Level 5

A right triangle is divided into two smaller triangles by the altitude of its hypotenuse. An incircle is inscribed in the upper triangle, while the lower triangle contains three circles which are tangent with each other as well as the sides of the lower triangle, as shown in the figure. All four circles are congruent. What is the ratio of the area of the four circles to the area of the original right triangle? If this ratio can be expressed as π ( a b b c ) \pi(\frac{a\sqrt{b}}{b} - c) where a , b , c a, b, c are squarefree and coprime, then submit a + b + c a + b + c .

Note: The diagram is not drawn to scale.


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nice problem!
Fun fact: it is a 30 30{}^\circ - 60 60{}^\circ - 90 90{}^\circ triangle.

Referring to the figure above, A B D \triangle ABD and C M F \triangle CMF are similar. Their similarity ratio is equal to the ratio of their inradii, which is 1 1 , hence the triangles are congruent.

Let A B = c AB=c , A C = b AC=b , A B C = B \angle ABC=B , A C B = C \angle ACB=C , cot B 2 = x \cot \dfrac{B}{2}=x . Denote the radius of each one of the four circles by r r .
B 2 + C 2 = π 4 cot ( B 2 + C 2 ) = 1 x cot C 2 1 x + cot C 2 = 1 cot C 2 = x + 1 x 1 \begin{aligned} \dfrac{B}{2}+\dfrac{C}{2}=\dfrac{\pi }{4}& \Rightarrow \cot \left( \dfrac{B}{2}+\dfrac{C}{2} \right)=1 \\ & \Rightarrow \dfrac{x\cot \dfrac{C}{2}-1}{x+\cot \dfrac{C}{2}}=1 \\ & \Rightarrow \cot \dfrac{C}{2}=\dfrac{x+1}{x-1} \\ \end{aligned} Since A B D \triangle ABD and C M F \triangle CMF are congruent, A D = F C c sin B = r cot C 2 + r c 2 cot B 2 cot 2 B 2 + 1 = r cot C 2 + r c 2 x x 2 + 1 = r ( x + 1 x 1 + 1 ) c = r x 2 + 1 x 1 ( 1 ) \begin{aligned} AD=FC& \Rightarrow c\cdot \sin B=r\cot \dfrac{C}{2}+r \\ & \Rightarrow c\cdot \dfrac{2\cot \dfrac{B}{2}}{{{\cot }^{2}}\dfrac{B}{2}+1}=r\cot \dfrac{C}{2}+r \\ & \Rightarrow c\cdot \dfrac{2x}{{{x}^{2}}+1}=r\left(\frac{x+1}{x-1}+1 \right) \\ & \Rightarrow c=r\cdot \dfrac{{{x}^{2}}+1}{x-1} \ \ \ \ (1)\\ \end{aligned} Moreover, b = A E + E G + G C = r cot B 2 + 4 r + r cot C 2 = r ( x + 4 + x + 1 x 1 ) = r x 2 + 4 x 3 x 1 ( 2 ) b=AE+EG+GC=r\cot \dfrac{B}{2}+4r+r\cot \dfrac{C}{2}=r\left( x+4+\dfrac{x+1}{x-1} \right)=r\cdot \dfrac{{{x}^{2}}+4x-3}{x-1} \ \ \ \ (2) These results yield a restriction for x x : b > 0 c > 0 } x 2 + 4 x 3 x 1 > 0 x > 1 } x > 1 ( 3 ) \left. \begin{matrix} b>0 \\ c>0 \\ \end{matrix} \right\}\Rightarrow \left. \begin{matrix} \dfrac{{{x}^{2}}+4x-3}{x-1}>0 \\ \ \ \\ x>1 \\ \end{matrix} \right\}\Rightarrow x>1 \ \ \ \ (3) Now we proceed to an equation for finding x x cot B = c b cot 2 B 2 1 2 cot B 2 = c b x 2 1 2 x = r x 2 + 1 x 1 r x 2 + 4 x 3 x 1 \cot B=\dfrac{c}{b}\Leftrightarrow \dfrac{{{\cot }^{2}}\dfrac{B}{2}-1}{2\cot \dfrac{B}{2}}=\dfrac{c}{b}\Leftrightarrow \dfrac{{{x}^{2}}-1}{2x}=\dfrac{r\cdot \dfrac{{{x}^{2}}+1}{x-1}}{r\cdot \dfrac{{{x}^{2}}+4x-3}{x-1}} which simplifies to x 4 + 2 x 3 4 x 2 6 x + 3 = 0 ( x 2 3 ) ( x 2 + 2 x 1 ) = 0 x = ± 3 o r x = 1 + 2 o r x = 1 2 \begin{aligned} & {{x}^{4}}+2{{x}^{3}}-4{{x}^{2}}-6x+3=0 \\ & \Leftrightarrow \left( {{x}^{2}}-3 \right)\left( {{x}^{2}}+2x-1 \right)=0 \\ & \Leftrightarrow x=\pm \sqrt{3} \ \ \ \ or \ \ \ \ x=-1+\sqrt{2} \ \ \ \ or \ \ \ \ x=-1-\sqrt{2} \\ \end{aligned} Due to the restriction ( 3 ) (3) , the only accepted solution is x = 3 x=\sqrt{3} .

Finally, we go for the required ratio:

( 1 ) , ( 2 ) b c = ( r x 2 + 4 x 3 x 1 ) ( r x 2 + 1 x 1 ) x = 3 b c = 8 r 2 ( 2 3 + 3 ) r 2 b c = 2 3 3 24 \begin{aligned} \left( 1 \right),\left( 2 \right) & \Rightarrow bc=\left( r\dfrac{{{x}^{2}}+4x-3}{x-1} \right)\cdot \left( r\dfrac{{{x}^{2}}+1}{x-1} \right) \\ & \overset{x=\sqrt{3}}{\mathop{\Rightarrow }}\,bc=8{{r}^{2}}\left( 2\sqrt{3}+3 \right) \\ & \Rightarrow \dfrac{{{r}^{2}}}{bc}=\dfrac{2\sqrt{3}-3}{24} \\ \end{aligned} Hence, r a t i o = 4 π r 2 1 2 b c = 8 π 2 3 3 24 = π ( 2 3 3 1 ) . ratio=\frac{4\pi {{r}^{2}}}{\frac{1}{2}bc}=8\pi \cdot \frac{2\sqrt{3}-3}{24}=\pi \left( \frac{2\sqrt{3}}{3}-1 \right). For the answer, a = 2 a=2 , b = 3 b=3 , c = 1 c=1 , thus a + b + c = 6 a+b+c=\boxed{6} .

\ \ \

PS: x = 3 cot B 2 = 3 B 2 = 30 B = 60 x=\sqrt{3}\Rightarrow \cot \dfrac{B}{2}=\sqrt{3}\Rightarrow \dfrac{B}{2}=30{}^\circ \Rightarrow B=60{}^\circ . A B C \triangle ABC is indeed a 30 30{}^\circ - 60 60{}^\circ - 90 90{}^\circ triangle.

Can you prove it?

Pi Han Goh - 10 months, 1 week ago

First thing tomorrow I'll post my solution.

Thanos Petropoulos - 10 months, 1 week ago

Great work

Valentin Duringer - 10 months, 1 week ago

Log in to reply

Thank you Valentin!

Thanos Petropoulos - 10 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...